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Abstract

The interplay between quenched disorder and interaction effects opens the possibility in a closed

quantum many-body system of a phase transition at finite energy density between an ergodic

phase, which is governed by the laws of statistical physics, and a localized one, in which the

degrees of freedom are frozen and ergodicity breaks down. The possible existence of a quantum

phase transition at finite energy density is strongly questioning our understanding of the funda-

mental laws of nature and has generated an active field of research called many-body localization.

This thesis consists of three parts and is dedicated to the understanding and characterization

of the phenomenon of many-body localization, approaching it from complementary facets. In

particular, borrowing methods and tools from different fields, we analyze timely problems.

The first part of the thesis is devoted to detecting the many-body localization transition and to

characterize both the ergodic and the localized phase it separates. Here we provide a character-

ization from two different perspectives: the first one is based on the study of local entanglement

properties. In the second one, using tools from quantum-chaos theory, we attempt to answer

the question of understanding time-irreversibility, and thus probing the breaking of ergodicity.

We analyze experimentally viable observables. Moreover, we propose two different quantities to

distinguish an Anderson insulating phase from a many-body localized one, which is one of the

issues in experiments.

The second part focuses on understanding the existence of a putative subdiffusive multifractal

phase. Analyzing the quantum dynamics of the system in this region of the phase diagram,

we point out the importance of finite-size effects, questioning the existence of this multifractal

phase. We speculate with a possible scenario in which the diffusivity and thus ergodicity could

be restored in the thermodynamic limit. Furthermore, we find that the propagation is highly

non-Gaussian, which could have an important effect on understanding the critical point of the

according transition. We tackle this problem also from a different angle. A possible toy-model

to understand many-body localization entails the Anderson model on a random-regular graph.

Also in the latter model the possible existence of an intermediate multifractal phase has been

conjectured. There, studying the survival return probability of a particle with time, we give a

new characterization of multifractal phases and give indication of the possible existence of this

phase. Nevertheless, we also outline possible caveats.

In the last part of this thesis we study the interplay between symmetry and correlated disorder

in a non-interacting fermionic system. We show another possible mechanism for breaking lo-

calization. In particular, we focus on studying information and particle transport, emphasizing

how the two types of propagation can be different.
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1.4 Aubry-André-Harper model . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Multifractal wavefunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Many-Body Localization 23

2.1 Integrable closed quantum many-body systems and the concept of non-
integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Quantum Thermalization in closed quantum systems . . . . . . . . . . . . 26

2.2.1 Eigenstate thermalization hypothesis . . . . . . . . . . . . . . . . . 29

2.2.1.1 Thermalization in Random Matrices . . . . . . . . . . . . 30

2.2.1.2 Thermalization in generic closed quantum many-body
systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1.3 Numerical evidence for the eigenstate thermalization hy-
pothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Many-Body-Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Localization in Fock Space . . . . . . . . . . . . . . . . . . . . . . 36

2.3.2 Numerical evidence of Many-Body Localization . . . . . . . . . . . 38

2.3.2.1 Analysis of the level statistics . . . . . . . . . . . . . . . 39

2.3.2.2 Eigenstates analysis . . . . . . . . . . . . . . . . . . . . . 41



v

2.3.2.3 Integrals of motion . . . . . . . . . . . . . . . . . . . . . . 43

2.3.2.4 Many-body mobility edges . . . . . . . . . . . . . . . . . 45

2.3.2.5 Absence of transport . . . . . . . . . . . . . . . . . . . . 46

2.3.2.6 Unbounded growth of Entanglement . . . . . . . . . . . . 47

II Detecting the Many-Body Localization transition and character-
ization of the ergodic and many-body localized phases 50

3 Quantum Mutual Information as a Probe for Many-Body Localization
52

3.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Quantum Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Quantum mutual information for the Aubry-André-Harper model . . . . . 56
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Part I

Introduction



2

The deep relation between thermodynamics and probability theory allows one to de-

scribe extremely complex systems composed of a huge number of degrees of freedom by

the knowledge of only few thermodynamic parameters [119]. The resulting concept of

classical statistical physics is a self-consistent framework which is strongly based on the

underlying ergodic hypothesis [53, 119]. The ergodic hypothesis states that the time that

the system spends in a region composed by its allowed microstates is proportional to the

volume of the region. Moreover, the dominance in probability of “typical” microstates,

makes the laws of thermodynamics a very intuitive concept.

Indeed, nobody will expect to see particles going back to an atypical initial condition in

a generic classical system. Nevertheless, the applicability as well as the foundations of

statistical physics for a closed quantum many-body system are not well understood [40].

On the one hand, recent advancements of controlled experimental techniques suggest

that generic closed quantum systems can thermalize [78], in the sense that the local

degrees of freedom in the long-time limit can be described by the laws of statistical

physics. On the other hand, thermalization can fail in strongly disordered closed inter-

acting many-body systems [17, 62]. The discovery of a class of generic systems in which

statistical physics breaks down questions our understanding of the fundamental laws of

nature.

The breaking of ergodicity is intimately connected with the phenomenon of Anderson

localization, in which non-interacting quantum particles subjected to a disordered po-

tential can be localized due to destructive interference [9]. Whether interactions will

delocalize the particles, and thus restore ergodicity, has puzzled physicists for many

decades, culminating in the discovery of a new type of quantum phase transition, which

may occur also at finite energy density [17, 62]. Indeed, the interplay between interac-

tions and quantum interference due to the presence of a disordered potential can drive

the system into a transition separating an ergodic phase, in which a mechanical statis-

tical description is possible, and a localized phase, in which its degrees of freedom are

frozen and ergodicity breaks down.

In the last few years many attempts have been undertaken with the aim of understating

and characterizing this transition, hence generating a fast moving field called many-body

localization (MBL) [106]. Furthermore, this result, besides questioning our understand-

ing of the applicability of statistical physics, is drastically changing the perspective of

condensed-matter physics. Condensed-matter theory, traditionally focuses on under-

standing low-temperature properties. Hence, the possibility of a quantum phase tran-

sition at finite energy density is redirecting the attention to the study of highly-excited

states, and thus facilitating the development of new ideas and methods, including new

analytical treatments and new numerical techniques [77, 152, 153, 159]. Moreover, the
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recent progress in experimental techniques in cold atoms and trapped ions provides for

a perfect playground to confirm and to stimulate new concepts, producing in less than

ten years of the discovery of MBL its first experimental evidence [24, 97, 129, 137].

Despite many efforts to characterize the two phases and to classify the transition, still

little is known about fundamental aspects of the problem [106]. Most of the difficulties

emerge due to the lack of powerful techniques to tackle interacting disordered systems

at finite energy density. Indeed, many of the standard methods both numerical and

analytical were developed to understand quantum phase transitions at the level of the

ground state. These methods fail badly due to the exponential growth in complexity of

the problem with system size. Furthermore, with the aim to solve the problem came

up many surprising results. For example the diffusive behavior expected in the ergodic

phase has not been confirmed by numerical simulations, rather a subdiffusive phase

composed by critical states has been found [15, 60, 94, 96, 132, 150]. Hence, MBL still

remains a changing unsolved problem.

The main aim of this thesis is to analyze the phenomena of MBL from complementary

different facets attempting to solve timely problems. This thesis is organized as follows:

In the first part (Part I), we introduce the main concepts and methods that we will use

throughout the thesis. In particular, in Chapter 1 we give an introduction of Ander-

son localization, focusing on models in hierarchical tree-structures and one-dimensional

lattices.

In Chapter 2, we introduce the concepts of thermalization in closed quantum many-body

systems. Here, we state and show numerical evidence of the eigenstate thermalization

hypothesis [40, 138], which is the most accredited theory attempting to explain ther-

malization in generic closed quantum systems. After that, we define the MBL problem

and report on several numerical characterizations of the highly excited quantum phase

transition. We give particular attention to the original idea of mapping this problem

to an Anderson localization model on a hierarchical tree-structure (localization in Fock

space). In Parts II-IV we present the results of the thesis.

In Part II, we focus on detecting the MBL transition and on characterizing both the

ergodic and the MBL phase. In Chapter 3 we focus on the study of local entanglement

properties. Here, borrowing tools from quantum-information theory, we demonstrate

how the quantum-mutual information can be efficiently used to detect the transition

and to uniquely describe the two phases. In Chapter 4, with the aim of characterizing

time-irreversibility in MBL systems, using tools from quantum-chaos theory, we give a

new characterization of the two phases. In both chapters we study only quantities that

in principle could be measured in an experimental setup. Moreover, we propose new
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methods to distinguish a non-interacting Anderson phase from an MBL phase, which is

a rather timely and relevant issue.

In Part III, we study the possible existence of an intermediate phase which is neither

ergodic nor localized, but composed of critical states (multifractal), which give rise to

subdiffusive transport. Specially, in Chapter 5, studying the dynamical property of the

system we question the existence of this phase, showing that its apparent signatures could

be just a finite-size effect and proposing a possible alternative scenario. In Chapter 6,

we tackle this problem from a different angle. A toy-model to understand MBL systems

could be the Anderson model on a random regular graph [7, 41, 57, 82, 145]. Also for

this toy-model, an intermediate multifractal phase could exist [7, 41, 82]. Studying the

wavepacket dynamics we provide evidence of its existence. Moreover, we propose a new

method to characterize multifractal phases.

In the last Part IV, we investigate the interplay between correlated disorder and symme-

try for a new model of non-interacting fermions. We emphasize how this interplay can

lead to a delocalization-localization transition at a specific single-particle energy. We

study the non-equilibrium dynamics, showing that information can propagate slower

than particles.

Finally, in Chapter 8 we summarize the results of this thesis, underlining open issues

and proposing new possible research directions.



Chapter 1

Anderson Localization

Anderson Localization is a wave-phenomenon in which transport in a non-interacting

system can be suppressed due to the presence of a quenched disorder potential [9, 147].

The existence of Anderson localization for a quantum system is intimately connected

to the particle-wave duality in quantum mechanics [126]. A classical particle subject

to a random potential U(x) will have a different kind of propagation depending on its

kinetic energy, K. Indeed, if its kinetic energy is larger than U(x) (K > U(x)), the

particle will propagate through the system. Instead, if its kinetic energy is smaller

than U(x) (K < U(x)), the particle will be able only to visit a bounded portion of

the system and it will oscillate back and forth in this allowed region [86]. Quantum

mechanics changes drastically this scenario, where a quantum particle behaves like a

wave and it will be able to tunnel through also higher potential barriers than its kinetic

energy [126]. Nevertheless, at the same time, a part of it will also be reflected by small

potential barriers. The reflected and the transmitted parts of the wavefunction will

not only interfere constructively but also destructively. At first approximation, this

transmitted-reflected phenomenon will take place randomly and hence the motion of the

particle may be approximated as a random walker where the particle diffuses through

the system. Nevertheless, this expectation turns out to be incorrect in the presence of

strong enough disorder. Indeed, if the disorder is strong enough, destructive interference

will dominate the constructive one and the transport will be completely suppressed, even

if the kinetic energy of the quantum particle is larger than the disordered potential. This

phenomenon was for the first time discovered by P.W. Anderson in his seminal work [9].

In this chapter, we will give an introduction to Anderson localization focusing on the

main results which are the conceptual backbone of this thesis.
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1.1 The locator Expansion

In the seminal work of P.W. Anderson a tight-binding model is considered in a cubic

lattice subject to a random potential. The Hamiltonian reads

Ĥ = −J
∑
<x,y>

|x〉〈y|+
∑
x

µx|x〉〈x|, (1.1)

|x〉 represents a state completely localized in the site x, {µx} are random variables

uniformly distributed between [−W/2,W/2] and the notation < x,y > indicates that

sites x and y are nearest neighbors. In the literature, the tight-binding model with

uncorrelated disordered potential is often referred as the Anderson model [51]. The idea

is to consider a particle initially localized in a site (without loss of generality, we will

take |0〉) and calculate the return probability in time, defined by:

|G0,0(t)|2 = |〈0|e−iĤt|0〉|2. (1.2)

If the system is localized, limT→∞ 1/T
∫ T

0 |G0,0(t)|2 > 0, since its amplitude does not

completely diffuse through the system. Nevertheless, at this point it is important to

underline that even if limT→∞ 1/T
∫ T

0 |G0,0(t)|2 > 0, the particle can propagate through

the system, since |G0,0(t)|2 is a local probe and it does not detect the propagation

outside the starting point. The last statement is connected to the fact that the system

can be only partially localized, in the sense that only for some energies the system is

localized [51].

G0,0(t) is the Green’s function in the space-time domain. However, to analyze the

problem better, it is necessary to consider it in the energy domain

Gx,y(E) =

∫
dt

2π
eiEtGx,y(t)

= −i lim
η→0

∫ ∞
0

dtei(E+iη)tGx,y(t)

= 〈x|(E − Ĥ+ i0+)−1|y〉,

(1.3)

where Gx,y(t) = 〈x|e−iĤt|y〉.

The formal solution for Gx,y(E) is given by

Gx,y(E) =
δx,y

E − µx
+

Jx,y
(E − µx)(E − µy)

+
∑
x1

Jx,x1Jx1,y

(E − µx)(E − µx1)(E − µy)
+ . . . , (1.4)

where we have defined the matrix elements Jx,y, to be equal to J if x and y are linked

in the 3D lattice structure, but zero otherwise. The Green’s function can be rewritten
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Figure 1.1: The left-column shows the behavior of the imaginary part of the Green’s
function in the case in which the system is delocalized, while the right-column shows
the case in which the system is localized [116]. In the figure N is the volume of the

system.

defining the self-energy Σx,x(E)

Gx,x(E) =
1

E − µx − Σx,x(E)
, (1.5)

with

Σx,x(E) =

∞∑
n=1

∑
x1,x2,...,xn 6=x

Jx,x1Jx1,x2 · · · Jxn,x
(E − µx1)(E − µx2) · · · (E − µxn)

. (1.6)

Broadening the energy (E → E + iη) with η > 0 to ensure convergence, the real part

of the self-energy (Re(Σx,x(E + iη)) gives a renormalization of the site energies {µx},
while the imaginary part of the self-energy (Im(Σx,x(E + iη)) determines the decay

of G0,0(t) with time. We have to distinguish two cases depending on the behavior of

Im(Σx,x(E + iη)):

1. If limη→0 ImΣ0,0(E + iη) exists and it is a regular function of E, then by the

Riemann-Lebesgue theorem

lim
t→∞
G0,0(t)→ 0.

The return probability decays to zero with time and thus the system is delocalized.
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2. A different possibility is that limη→0 ImΣ0,0(E + iη) is not a regular function of

E. Let’s consider the case in which we truncate Eq. 1.6 only to second order in J

lim
η→0

ImΣ0,0(E + iη) ≈ − lim
η→0

∑
〈x1〉

J2η

(E − µx1)2 + η2
= −πJ2

∑
〈x1〉

δ(E − µx1),

the sum
∑
〈x1〉 runs over the six neighboring sites of {0}.

iG0,0(t) = − lim
η→0

∫
i
dE

2π

E + iη − µ0 −
∑
〈x1〉

J2

E + iη − µx1

−1

e−iEt =
∑
j

Cje
−iẼjt,

(1.7)

where {Ẽj} ∈ R are respectively the poles of the integrand function. In this case

|G0,0(t)|2 does not decay and thus the system is localized.

At this point we find that if the system is localized, then limη→0 ImΣ0,0(E + iη) must

have a non-regular part.

To get a better physical understanding, let’s define the local density of states

n(E,0) =
∑
l

|ψl(0)|2δ(E − εl), (1.8)

where {ψl(x)} are the eigenstates of Ĥ (Eq. 1.1) with eigenenergies {εl}. The local

density of state is connected to the Green’s function by the relation [50]

n(E,0) = − lim
η→0

1

π
ImG0,0(E + iη).

So far we have defined localization only considering the transport properties of the sys-

tem, nevertheless it will turn out (at least for this kind of systems with uncorrelated

disorder and without special symmetry [121]) that if transport is absent, then the eigen-

states of Ĥ (Eq. 1.1) are exponentially localized ψl(x) ∼ e−|x−xloc|/ξloc , where xloc is the

center of localization and ξloc is the localization length. In other words, if the system

is localized then its eigenstates will have a finite support in space (∼ ξloc) which does

not scale with the volume of the system. On the contrary, if the system is delocalized,

then {ψl(x)} will be to first approximation, spread out in the entire system and their

amplitudes will be uniform |ψl(x)|2 ∼ 1/V , where V is the volume for a finite system.

Let’s consider a finite system of volume V , whose spectrum is always discrete

ImG0,0(E + iη, V ) = −
V∑
l

|ψl(0)|2 η

(E − εl)2 + η2
. (1.9)
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If the system is delocalized,

ImG0,0(E + iη, V ) ∼ − 1

V

V∑
l

η

(E − εl)2 + η2
.

Thus, for a finite system and for a finite η, n(E,0) will be a sum (∼ O(V )) of Lorentzians

with a height ∼ O(1/V η). In the limit V →∞ and η → 0 with V ·η ∼ O(1), n(E,0) will

be a smooth finite function of E. Instead, for a localized system, in the sum of Eq. 1.9

contribute only energies such that the distance between the site 0 and the localized

center of the respective eigenstates is within the localization length

ImG0,0(E + iη, V ) ∼ − 1

ξloc

∑
l:|xloc(l)|<ξloc

η

(E − εl)2 + η2
.

In this case, ImG0,0(E+ iη, V ) will be sum of a finite number (∼ O(ξloc)) of Lorentzians

with height ∼ O(1/ξlocη). Thus, for a localized system, in the limit V →∞ and η → 0,

n(E,0) is not a regular function. Figure 1.1 [116] is a graphical representation of what

we have discussed, it shows the behavior of the imaginary part of the Green’s function

in the case in which the system is delocalized (left-column) and in which the system

is localized (right-column). Moreover, it is important to note that so far we did not

average over disorder configurations {µx}, indeed the average over disorder will wash

out the difference in Eq. 1.9 between extended states and localized states. Averaging

over disorder is equivalent to making an average over space in the limit V → ∞, it is

called self-averaging and it can be proved rigorously that for the imaginary part of the

Green’s function it holds [92], that

ImG0,0(E + iη, V ) ∼ 1

V

∑
x

V∑
l

|ψl(x)|2 η

(E − εl)2 + η2
∼ O(1/V η),

where the overline indicates the average over the disorder configurations. The averaged

local density of states is always a smooth function regardless if the system is localized

or not. For this reason, to understand if the system is localized or not, one can not just

study the averaged local density of states, but one must also study the entire probability

distribution. Moreover, since ImG0,0(E+ iη) ∝ ImΣ0,0(E+ iη), P.W. Anderson studied

the probability distribution of ImΣ0,0(E + iη) [9].

Let PE,η(Γ) be the probability distribution of Γ = −ImΣ0,0(E + iη). We have seen

that for a localized system, Γ must not be regular (e.g., sum of delta-functions), which

implies that with probability one Γ must be zero, so limη→0 PE,η(Γ > 0)→ 0.
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In general, Γ is a sum of Lorentzians, and with high probability (∼ 1−O(η)), we have

Γ = ηJ2/W 2 (second order perturbation theory in J/W ), which implies

J2

W 2
PE,η(J

2/W 2) ∼ O(1)⇒ PE,η(ηJ
2/W 2) ∼W 2/(ηJ2) “Typical-condition”.

Nevertheless, with a small probability O(η/W ), the energy E is in resonance with an

on-site energy and so Γ ∼ J2/η

J2

η
PE,η(J

2/η) ∼ O(η/W )⇒ PE,η(J
2/η) ∼ η2/(WJ2) “Rare events-condition”.

Moreover, we have seem that the average over disorder configurations of Γ is always

finite (Γ > 0) independently if the system is localized or not. Thus, its probability

distribution must have long-tail, so we can assume that PE,η(Γ) ∼ 1/Γα. Matching the

“Typical” and “Rare” events conditions, we have

PE,η(Γ) ∼ J

W

√
η/Γ3. (1.10)

Furthermore, the imaginary part of the self-energy can be expressed using the so called

path-representation [92, 128]

ImΣ0(E + iη) = −η

∣∣∣∣∣∣
∑
path

Apath

∣∣∣∣∣∣
2

+O(η3), Apath =
∏

xj∈path

J

E − µxj
,

where the sum runs over all possible paths that start from 0 and that never return

back. Thus Γ = ηA, as η → 0 the only possibility to have a finite Γ is that A diverges

in probability as the length of the paths goes to infinity. To analyze the probability

distribution of A, P.W. Anderson makes the following simplifications:

1. Only the center of the band is considered (E = 0).

2. The paths are statistically independent.

3. Only non self-crossing paths are considered.

Using these approximations and using a generalization of the central limit theorem in

the case in which random variables do not have a finite variance, it is possible to estimate

the probability distribution (Pn(A)) of A with the restriction that A contains only paths

with fixed length n [9]

Pn(A) ∼ [evK ln(1/v)]n

A2−1/ ln 1/v
exp

[
−C [evK ln(1/v)]n

A1−1/ ln 1/v

]
, (1.11)
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K is the constant that determines how many non self-crossing paths of length n ex-

ist (V ∼ CKn) and v = J/W . Thus in the limit n → ∞, if evK ln(1/v) < 1

limn→∞, Pn(A) → 0 and thus the system is localized. Instead, if evK ln(1/v) > 1 ,

Pn(A) diverges as n → ∞ and it is a sign that perturbation theory breaks down and

that the system could be delocalized. The critical value of W is determined by

evK ln(1/v) = 1⇒ eKJ

Wc
ln
Wc

J
= 1 (1.12)

It is important to note that this estimate for the critical value is an upper-bound, since

it is derived doing perturbation theory from the localized phase. In the second part

of his work, P.W. Anderson tried to remove the simplification of considering only non

self-crossing paths by introducing a cut-off on the probability distribution of the random

variables {µx} (|µx| > δ(W ) > 0 for E = 0) [9] in order to avoid resonant processes. By

introducing this cut-off, it is possible to obtain a redefined formula for the critical point

2KJ

Wc(1− (J/Wc)2)
ln
Wc

J
= 1. (1.13)

Recapitulating, P.W. Anderson proved that the tight-binding model with diagonal un-

correlated disorder has a transition between extended states and localized states in a

cubic lattice (localization-delocalization transition). Nevertheless, the assumption that

the paths are statistically independent is mathematically incorrect [142] and also the

introduction of the cut-off is difficult to motivate [1]. For this reason more than 10 years

later R. Abou-Chacra, D. J. Thouless and P. W. Anderson proposed a different approach

the so-called “self-consistent theory of localization”.

1.2 Self-consistent theory of localization

In 1973, R. Abou-Chacra, D. J. Thouless and P. W. Anderson in their work [1] proved

the existence of the localization-delocalization transition solving self-consistently a set

of equations for the self-energy. It can been proved that the self-energy can be expressed

in the following way [52]

Σx,x(E) =
∑
y6=x

Jx,yJy,x

E − µy − Σ
(x)
y,y(E)

−
∑
y6=x

∑
z6=x,y

Jx,zJz,yJy,x

(E − µz − Σ
(x,y)
z,z (E))(E − µy − Σ

(x)
y,y(E))

+ · · · ,
(1.14)

where Σ
(x1,x2,···xn)
x,x (E) is the self-energy of the same system, but where the sites

(x1,x2, · · · ,xn) have been removed. Also the “reduced” self-energies {Σ(x1,x2,···xn)
x,x (E)}
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Figure 1.2: The figure shows a Bethe Lattice with K = 2,[13].

can be expressed likewise as in Eq. 1.15.

Σ
(x)
y,y(E) =

∑
z6=x,y

Jy,zJz,y

E − µy − Σ
(x,y)
z,z (E)

+ · · · (1.15)

The main approximation is to consider only the first terms of these expansions

Σx,x(E) =
∑
y6=x

Jx,yJy,x

E − µy − Σ
(x)
y,y(E)

,

Σ
(x)
y,y(E) =

∑
z6=x,y

Jy,zJz,y

E − µz − Σ
(x,y)
z,z (E)

,

(1.16)

generally

Σ
(x1,··· ,xn−1)
xn,xn (E) =

∑
z 6=x1,··· ,xn−1

Jxn,zJz,xn

E − µz − Σ
(x1,··· ,xn−1)
z,z (E)

. (1.17)

Moreover, making the approximation that removing one site from the system does not

change the self-energy

Σx,x(E) =
∑
y

Jx,yJy,x
E − µy − Σy,y(E)

. (1.18)

As we have already discussed, we have to study the probability distribution of the self-

energy. After a broadening of the energy E → E + iη

ReΣx,x(E) =
∑
y

|Jx,y|2(E − µy − ReΣy,y(E))

(E − µy − ReΣy,y(E))2 + (η + ImΣy,y(E))2
,

ImΣx,x(E) = −
∑
y

|Jx,y|2(η + ImΣy,y(E))

(E − µy − ReΣy,y(E))2 + (η + ImΣy,y(E))2
.

(1.19)
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It is possible to find an integral equation for the joint probability distribution of ReΣx,x(E)

and ImΣx,x(E) [1]. This integral equation for the joint distribution is too difficult to

be exactly solved for a generic system [1]. Nevertheless, there exists a case where the

approximations that have been done so far are justifiable [1, 128] and where this integral

equation can be solved. Namely, the case of Anderson localization on a Bethe lattice.

1.2.1 Anderson localization on a Bethe lattice

A Bethe lattice is a tree-like structure without loops with fixed connectivity (K), see

Fig. 1.2. This special structure being free from loops, makes the self-consistent approx-

imation in Eq. 1.15 an accurate assumption [1, 128]. Indeed, removing a point in the

graph does not modify its local and global structure in the limit of large K. Furthermore

Eq. 1.19 can be further simplified

ReΣx,x(E) ∼ J2
K∑
y=1

1

E − µy − ReΣy,y(E)
,

ImΣx,x(E) ∼ J2
K∑
y=1

η − ImΣy,y(E)

(E − µy − ReΣy,y(E))2
.

(1.20)

In the last approximation, it has been supposed that the system is localized and thus

ImΣx,x(E) ∼ O(η). Moreover, by neglecting ReΣy,y(E) in ImΣx,x(E) since ReΣy,y(E) ∼
O(J2/W ), {ReΣx,x(E)}x and {ImΣx,x(E)}x become independent random variables

ReΣx,x(E) ∼ J2
K∑
y=1

1

E − µy − ReΣy,y(E)
,

ImΣx,x(E) ∼ J2
K∑
y=1

η − ImΣy,y(E)

(E − µy)2
.

(1.21)

It is interesting to note, that the last approximation, which is valid only in a localized

phase, ensures that ImΣx,x(E) is not an analytic function (Cauchy - Riemann equations),

which as we discussed, is one of the main ingredients to have localized states. Finally,

considering the case in which {µx} are uniformly distributed between [−W/2,W/2], we

have

P (ImΣ0) =
1

WK

∫ W/2

−W/2
dµ1P (Σ1) · · ·

∫ W/2

−W/2
dµKP (ΣK)δ

ImΣ0 − J2
K∑
y=1

1 + ImΣy,y(E)

(E − µy)2


(1.22)

where we made the rescaling ImΣ0 → −ηImΣ0. Note, that the double indexing in Σ0,0

is dropped employing a single collective index Σ0. Tacking the Laplace transform (f(s))
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of P (ImΣ0) to transform sums into products

f(s) =
[ ∫ W/2

−W/2

dµ

W
f
(
J2 s

(E − µ)2

)
e
− sJ2

(E−µ)2
]K
. (1.23)

As we have already discussed, P (ImΣ0) must decay as a power law (Eq. 1.10), P (ImΣ0) ∼
1/(ImΣ0)α. It implies that its Laplace transform will have the form f(s) ∼ 1 −
(constant)sβ for s � 1 and β = α − 1. The normalization condition for the proba-

bility distribution of ImΣ0 (
∫
dImΣ0P (ImΣ0) = 1) leads to the restriction β ∈ [0, 1/2].

Thus

KJ2β

∫ E+W/2

E−W/2

dx

W

1

x2β
= 1. (1.24)

Considering E = 0 (center of the band), we find the condition

K

(1− 2β)

(2J)2β

W 2β
= 1. (1.25)

We are looking at the lower value of W , such that there exists a β ∈ [0, 1/2] which

satisfies Eq. 1.25. It is possible to show that it satisfies the following [1] equation

Wc

J
= 2Ke log

Wc

2J
(1.26)

The last equation give an estimation for the critical value Wc for the localization-

delocalization transition on a Bethe lattice.

Recently, V.E. Kravtsov et al. [82], removing the assumption of neglecting ReΣx,x(E)

in ImΣx,x(E) (Eq. 1.20), refined the equation for the critical point Wc, finding

2K log
Wc

2J
=
Wc

2J
− 2J

Wc
. (1.27)

In this section we have shown that on a Bethe lattice a localization-delocalization tran-

sition happens. The approximate formula for the critical point Wc (Eq. 1.27) turns out

to be a good approximation in the limit of K large. Nevertheless, the critical value for

K = 2 (Fig. 1.2) using Eq. 1.27 is at Wc ≈ 17.6 for J = 1, what is in good agreement

with numerical simulations [41, 82].

The limiting case K = 1 (one-dimensional chain) is also exactly solvable and in the next

section, we will introduce the main tools used to analyze and solve this case.
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1.3 Anderson Localization in one dimension

In the early sixties, N.F. Mott and W.D. Twose [105], following the work of Anderson [9],

conjectured that in one-dimensional systems (K = 1) all single-particle eigenstates are

localized for any amount of uncorrelated disorder. This statement was given a mathe-

matically rigorous proof by M. Goldshtein et al. in the seventies [58]. Moreover, this case

is for us of particular interest, since many of the results that we will state (Chapter 3-7)

are for one-dimensional systems.

The Schrödinger equation for the tight-binding model (Eq. 1.1 with J = 1) in one-

dimension reads

− ψx−1 − ψx+1 + µxψx = Eψx (1.28)

If the disordered potential is absent then the solution of Eq. 1.28 is given by

E = 2 cos(k), ψx ∼ A1e
ikx +A2e

−ikx. (1.29)

The solution is a linear combination of plane-waves and thus the eigenstates are delo-

calized in space, in the sense that they are spread over the entire system. Eq. 1.28 can

be solved recursively (
ψx+1

ψx

)
=

(
µx − E −1

1 0

)(
ψx

ψx−1

)
, (1.30)

defining

Ax =

(
µx − E −1

1 0

)
, (1.31)

we have (
ψx+1

ψx

)
= AxAx−1 · · ·A1

(
ψ1

ψ0

)
. (1.32)

(
ψ1

ψ0

)
is the boundary condition of the Schrödinger equation. If the system is localized,

we expect the eigenstates to decay exponentially fast in space ψx ∼ e−x/ξloc . It is possible

to prove that for a fixed energy E there exists a one dimensional vector space V ⊂ R2,

such that if

(
ψ1

ψ0

)
∈ V then, for any amount of disorder, we have ψx ∼ e−x/ξloc with

ξ−1
loc = − lim

x→∞

1

x
log ‖AxAx−1 · · ·A1

(
ψ1

ψ0

)
‖ > 0 iff

(
ψ1

ψ0

)
∈ V, (1.33)
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where we have introduced the norm of a vector ‖v‖ =
√
|v1|2 + |v2|2. The one dimen-

sional vector space depends on the specific random configuration {µx}, the value of

ξ−1
loc (self-averaging) does not and it depends only on the energy E. Moreover, since

det(Ax) = 1 ∀x, we have

ξ−1
loc = lim

x→∞

1

x
log ‖AxAx−1 · · ·A1

(
ψ1

ψ0

)
‖ > 0 iff

(
ψ1

ψ0

)
6∈ V, (1.34)

The last statement means that for almost any choice of the boundary condition and

for a fixed energy E, the solution will diverge ψx ∼ ex/ξloc . The last statement can be

reformulated in the following way

ξ−1
loc(E) = lim

x→∞

1

x
log ‖AxAx−1 · · ·A1‖ > 0 with probability one (1.35)

Formally, ξ−1
loc(E) is the Lyapunov exponent of the product of matrices {Ax}. Moreover,

in the literature the method that we explained is called “transfer matrix technique”. We

will use this technique in several points in this thesis (Chapters 3,7).

The main theorems and assumptions which were used by M. Goldshtein et al. [58] to

prove that for any amount of uncorrelated disorder ξ−1
loc(E) > 0 are:

1. The matrices {Ax} are independently and equally distributed.

2. The Oseledec-Ruelle Theorem (multiplicative ergodic Theorem) [118].

3. Fürstenberg’s Theorem [56].

Nevertheless, there is a point in the proof that it is of particular interest because it shows

the generality of this theory. Moreover, this part of the proof is the only part where the

actual form of the matrices {Ax} are used. In this part one needs to show that, there

exist at least an element in the matrix group constructed by the matrices {Ax}∞1 that

acts as a contraction in a two dimensional sphere S1/{+,−} (v, w ∈ S1, v ∼ w if v = ±w
). Let’s consider the following element in the group

(AxA
−1
y )n =

(
1 n(µy − µx)

0 1

)
, (1.36)

with µx 6= µy.

lim
n→∞

(AxA
−1
y )n

(
v1

v2

)

‖(AxA−1
y )n

(
v1

v2

)
‖

→

(
±1

0

)
. (1.37)



17

We have found an element in the group that contracts any elements in S1/{+,−} in

just one point. Furthermore, since it is the only point of the proof where the form of

matrices are used, it underlines two important points.

1. Any kind of uncorrelated disorder (also binary disorder µx ∈ {W1,W2}) will give

a finite localization length (ξ−1
loc(E) > 0).

2. The element (AxA
−1
y )n does not depend on the energy E, what implies that

ξ−1
loc(E) > 0 ∀E.

Furthermore, a perturbative calculation shows that in the weak disorder limit (W � 1)

the localization length is given by [44, 80]

ξ−1
loc(E) =

W 2

24(4− E2)
, |E| < 2. (1.38)

Nevertheless, numerical simulations show that the numerical prefactor for ξ−1
loc(E = 0)

is different, ξ−1
loc(E = 0) = W 2/105 [44, 114]. The origin of this discrepancy is due to an

anomalous effect at E = 0, in which second order perturbation theory breaks down.

Finally, it is important to note that the assumption that the matrices {Ax} are statisti-

cally independent is fundamental. For example, if one considers the model with binary

disorder in which the random on-site energies {µx} appear in identical pairs

(µx1, µx1, µx2, µx2, ...), then there are values of E for which ξ−1
loc(E) = 0 [25, 48, 55].

1.3.1 Localization length and density of states

In the last section, we have introduced a technique to understand the behavior of the lo-

calization length in one-dimensional systems. In this section we show a relation between

the localization length and the density of states in one-dimensional systems [37, 65, 143].

Let’s consider a chain of length L and fix the boundary condition

(
ψ1

ψ0

)
, then the

solution ψL due to the recursive relation Eq. 1.32 is a polynomial of degree L− 1 of the

energy E

ψL(E) = C

L−1∏
j=1

(Ej − E) = C

L−1∏
j=1

|Ej − E|eiπθ(E−Ej), (1.39)

{Ej} are the roots of ψL(E) and θ(x) is the step function. Taking the logarithmic of

ψL(E) and dividing by L we have,

1

L
logψL(E) =

1

L

L−1∑
j=1

log |Ej − E|+
iπ

L

L−1∑
j=1

θ(E − Ej) +
1

L
logC. (1.40)
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It can be proved that the roots {Ej} are indeed distributed like the eigenvalues of the

system [65]. Thus, we can replace the sum in the limit of large L by an integral over the

density of states ρ(E) and taking the average over the disorder ( 1
L logψL(E) is not self

averaging)

lim
L→∞

1

L
logψL(E) =

∫ ∞
−∞

dE′ρ(E′) log |E − E′|+ iπ

∫ E

−∞
dE′ρ(E′). (1.41)

taking the real and the imaginary part, we haveξ
−1
loc(E) =

∫∞
−∞ dE

′ρ(E′) log |E − E′|,
1
π Im

[
limL→∞

1
L logψL(E)

]
=
∫ E
−∞ dE

′ρ(E′).
(1.42)

These relations are called the Herbert-Jones-Thouless formulae [65, 143]. These formulae

are general, in the the sense that they hold for any one-dimensional system, and we will

use them later in order to analyze several models (Chapter 7).

1.3.2 Landauer formalism

We have shown that for any amount of uncorrelated disorder in one-dimensional systems

(without special symmetry, and with finite-range hopping) localization occurs. In this

section, we show that this system describes a perfect insulator called the Anderson

insulator.

In 1970, Landauer [87] studied the conductivity of one-dimensional chains with disor-

dered potential. Let’s consider a one-dimensional chain of length L subject to a random

potential, in which the two ends are coupled to two reservoirs. Applying a small differ-

ence of potential ∆V between the two reservoirs, an electric current (j = intensity flux)

will flow through the system (without loss of generality, suppose that the potential in

the left-reservoir is higher than the one in the right). At zero temperature (T = 0) the

difference in the electron density is given by

∆n = n(EF + qe∆V )− n(EF ) = qe
∂n

∂E

∣∣∣
EF

∆V, (1.43)

where EF is the Fermi energy and qe is the charge of an electron, moreover, for one-

dimensional systems ∂n
∂E

∣∣∣
EF

= (πvF )−1, vF is the Fermi velocity. Since the potential is

higher in the left part, the current will flow from left to right, and part of it will be

reflected with a rate R̃ and part of it will be transmitted with a rate T̃ , (R̃ + T̃ = 1).
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Thus the difference in the electron density is given by

∆n =
2R̃j

qevF
=
qe∆V

πvF
, (1.44)

giving the relation

j =
q2
e∆V

2πR̃
. (1.45)

The conductivity G is defined as I/∆V where I is the current that has been transmitted

jT̃

G =
q2
e

2π

T̃

R̃
. (1.46)

The idea is to relate the coefficient T̃ with the localization length ξloc. Without loss

of generality, the point in the chain x ∈ [0, L − 1] are the sites subject to the random

potential, while in the two reservoirs the wavefunction are given by
ψx = eikx

injected
+ re−ikx

reflected
x = −1,−2, ...

ψx = teikx
transmitted

x = L,L+ 1, ...
(1.47)

where R̃ = |r|2 and T̃ = |t|2. Using the recursive Eq. 1.32 with E = 2 cos(k)

z(L) = AL−1AL−2 · · ·A0z(−1), (1.48)

where we have defined

z(L) =

(
teik(L+1)

teikL

)
, z(−1) =

(
1 + r

e−ik + reik

)
. (1.49)

Let’s note that ‖z(L)‖ ∝ t, thus using Eq. 1.33

G ∼ |t|2 ∼ e−2L/ξloc . (1.50)

As expected, the system being localized, G decays exponentially with L, and thus the

system is an insulator (Anderson insulator).

1.4 Aubry-André-Harper model

In an experimental setup (e.g., cold-atoms, trapped ions) [80, 97, 129, 137] it is not easy

to simulate systems with uncorrelated disorder, and usually some sort of correlation be-

tween on-site energies is present. Thus, whether the localization persists in the presence

of correlated disorder, is an important question that has been the center of intensive
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research [70]. Indeed, even with on-site disorder, where all single-particle eigenstates are

exponentially localized in one dimension [58, 105], correlations in the disorder can either

partially or completely destroy localization [38, 48, 70, 71, 85]. Nevertheless, there exists

a model defined in a one-dimensional lattice with a quasi-periodic potential (which can

be considered a kind of correlated disorder), in which a localization-delocalization tran-

sition occurs. Moreover, the system with this quasi-periodic potential can be simulated

in an experimental setup [97, 129].

The Schrödinger equation reads

− ψx−1 − ψx+1 +W cos (2παx)ψx = Eψx, (1.51)

where W cos (2παx) is the quasi-periodic potential with α = 1+
√

5
2 (Golden ratio), this

model is called Aubry-André-Harper model (AAH) [12]. We will study this model in dif-

ferent parts of this thesis (Chapters 3, 4). The AAH model has an important symmetry

the so-called self-dual symmetry. Defining {φk} by

ψx =
∑
k

ei2παkxφk, (1.52)

the Schrödinger equation for the rotated wavefunctions {φk} reads

− W

2
φk−1 −

W

2
φk+1 + 2 cos (2παk)φk = Eφk. (1.53)

At W = 2 the Schrödinger equation for {ψx} and {φk} are the same, this special value

of W is called the self-dual point. It is possible to prove that exactly at W = 2 the

system has a localization-delocalization transition.ξ
−1
loc(E) > 0, W > 2,

ξ−1
loc(E) = 0, W < 2.

In 1980, S. Aubrey and G. André proved an important property of the density of

states [12], which is a direct consequence of the duality transformation (Eq. 1.52)

ρW (E) = ρ4/W (2E/W ), (1.54)

where we added a sub-script W on the density of states to indicate the value of the

potential strength of the system. Finally, using the Herbert-Jones-Thouless formulae

(Eq. 1.42) we have

ξ−1
loc,W (E) = ξ−1

loc,4/W (2E/W ) + logW/2. (1.55)
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Thus, since ξ−1
loc,W (E) ≥ 0 and ξ−1

loc,4/W (2E/W ) ≥ 0, we have for W > 2

ξ−1
loc,W (E) ≥ logW/2. (1.56)

The last equation implies that the system is exponentially localized for W > 2, moreover,

it implies that its dual solution is extended (since it is its Fourier transform), thus

ξ−1
loc,4/W (2E/W ) = 0.

ξ−1
loc,W (E) = logW/2. (1.57)

In summary, the system is exponentially localized for W > 2 and extended for W < 2,

moreover the localization length ξ−1
loc,W (E) does not depend on the energy E.

1.5 Multifractal wavefunctions

We have seen that the eigenstates of a system in which disorder is present can be localized

or delocalized. We have described, that the delocalized wavefunctions span uniformly

the system, whereas the localized wavefunctions, are confined in a restricted region of

the system.

Nevertheless, at the critical point of an Anderson transition, the amplitude of the eigen-

states present strong fluctuations in space [51]. Indeed, at criticality the wavefunc-

tions are not extended (delocalized) neither localized, and they are called multifractal

wavefunctions. Multifractal wavefunctions are characterized by an infinite number of

exponents {τq}. Defining the generalized inverse participation ratio (IPRq)

IPRq =
V∑
x

|ψ(x)|2q, q ≥ 1, (1.58)

for a system of volume V , we have

IPRq ∼ V −τq , (1.59)

where the overline indicates the average over disorder configurations. The set of expo-

nents {τq} are usually parameterized by introducing the multifractal exponents {Dq}

τq = Dq(q − 1). (1.60)

If the system is extended (ergodic) Dq = 1, while if the system is localized Dq = 0. For

multifractal states Dq is a non trivial function of q, and 0 ≤ Dq ≤ 1. Moreover, one can
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also define the anomalous dimension exponents {∆q}

τq = (q − 1) + ∆q. (1.61)

The most studied exponent is ∆2, and it can be related to the behavior of the two point

correlation function [30]

V 2|ψε(x)|2|ψε+ω(x′)|2 ∼
(
|x− x′|
Vω

)−∆2

, (1.62)

where Vω ∼ (ρω)−1 with ρ the density of states.

Defining the probability distribution of the squared amplitude of the wavefunction

P (|ψ|2) ∼ 1

|ψ|2
V
−1+f(− log |ψ|2

log V
)
, (1.63)

the {IPRq} (Eq 1.58) can be obtained by calculating different moments of the probability

distributions P (|ψ|2). Indeed,

IPRq ∼
∫
dαV −qα+f(α). (1.64)

Evaluating the integral using the saddle-point approximation

IPRq ∼ V −τq , τq = qα− f(α), q = f ′(α). (1.65)

In other words, τq is the the Legendre transform of the function f . The function f(α)

measure the fractal dimension of the wavefunction

#{x : |ψ(x)|2 ∼ V −α} ∼ V f(α). (1.66)

For a completely ergodic system (|ψ(x)|2 ∼ V −1), f(α) will be not regular function,

with f(α = 1) = 1 but f(α) = −∞ otherwise. For multifractal-states f(α) is a convex

function, and its maximum is shifted to α0 ≥ 1.

In this section, we described the main definitions and tools to characterize multifractal

states. We will use this definition mostly in Chapter 6, where we will inspect the possible

existence of a multifractal phase in the Anderson model on a Bethe lattice.



Chapter 2

Many-Body Localization

In Chapter 1, we have seen that the presence of strong quenched disorder can localize

a non-interacting quantum system. Whether localization persists when interactions

between degrees of freedom are introduced, has been a fundamental question since the

time of the discovery of Anderson localization [9]. Indeed, the original motivation of

the seminal work of Anderson was to study interacting spin models [9]. During several

decades, this question has generated important debates and interesting directions of

research [5, 6, 54], without finding a definitive accepted answer. In 2006, D.M. Basko,

I.L. Aleiner and B.L. Altshuler showed in their seminal work [17] that the localized

phase is robust if a weak interaction is taken into account. Moreover, they also found

the existence of a new type of localization-delocalization transition, which occurs even

at finite energy density [17, 62]. The last result brought new emphasis, giving rise to a

new field of research called many-body localization (MBL) [106]. As we will describe,

this problem is intimately connected with the understanding of the fundamental laws

of statistical mechanics. Hence, shedding light on the MBL problem, could bring new

insights on the fundamental laws of nature.

The aim of this chapter is to give a self contained explanation of MBL, especially focusing

on recent results, which will be used later in the thesis. This chapter is organized as

follows. First, we explain the concept of integrability and non-integrability in closed

quantum many-body systems. Next, we give the definition of thermalization in closed

quantum systems. This topic is strictly linked with a conjecture called the “eigenstate

thermalization hypothesis” [40, 138], which is the most accredited theory attempting to

understand thermalization in closed systems from a quantum-mechanical perspective.

Second, we define what many-body localization means. In the last part, we collect

several results which underline different aspects of MBL.
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2.1 Integrable closed quantum many-body systems and

the concept of non-integrability

The aim of this section is to introduce the concept of (non-)integrability in quantum

systems.

A quantum many-body system is considered integrable, when it can be described by an

algebraic number in volume of commuting constants of motion and couplings between

them. Although, the exact definition of integrability in a quantum system is still under

debate, a review concerning possible definitions and caveats for different definitions

can be found in [28]. For many practical purposes, an integrable quantum system is

a non-interacting quantum system (its Hamiltonian is quadratic in the creation and

annihilation fermionic (bosonic) operators), or a system which can be solved using Bethe

ansatz [74]. Moreover, these systems are fine-tuned, in the sense that any generic random

perturbation will drastically change some properties of these systems (e.g., transport

properties).

In this chapter and in the next ones, we focus mainly on one-dimensional lattice models

with local Hilbert space of dimension two (e.g., fermionic and spin-1/2 chains). For this

reason let’s consider a generic one-dimensional lattice system of length L described by a

Hamiltonian Ĥ. Since Ĥ is defined up to an additive constant, we can consider the case

in which Tr[Ĥ] = 0. The Hilbert space where Ĥ is defined is (C2)⊗L and its dimension is

D = 2L. Let {En} and {|En〉} be the eigenvalues and eigenvectors of Ĥ. We can always

construct L integrals of motion in the following way

τ̂ zj =
∑
n

ajn|En〉〈En| 1 ≤ j ≤ L, (2.1)

with {(a1
1, a

2
1, · · · , aL1 ), · · · , (a1

2L
, a2

2L
, · · · , aL

2L
)} all possible sequences of length L com-

posed by {−1, 1}. The following relations hold

(τ̂ zj )† = τ̂ zj , (τ̂ zj )3 = τ̂ zj ,

[τ̂ zi , τ̂
z
j ] = 0, ∀i, j,

(2.2)

and

[Ĥ, τ̂ zj ] = 0. (2.3)

Moreover, it can be shown that the Hamilitonian Ĥ can be expressed in terms of

{τ̂ zj } [117]

Ĥ =
∑
i

b
(1)
i τ̂ zi +

∑
i<j

b
(2)
i,j τ̂

z
i τ̂

z
j + · · ·+ b

(L)
1,2,..,Lτ̂

z
1 τ̂

z
2 · · · τ̂ zL, (2.4)
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where

b
(1)
i =

1

2L
Tr[Ĥτ̂ zi ] =

1

2L

∑
n

Ena
i
n,

b
(2)
i,j =

1

2L
Tr[Ĥτ̂ zi τ̂ zj ] =

1

2L

∑
n

Ena
i
na

j
n,

(2.5)

and generally

b
(m)
i,j,··· ,k =

1

2L
Tr[Ĥτ̂ zi τ̂ zj · · · τ̂ zk ] =

1

2L

∑
n

Ena
i
na

j
n · · · akn. (2.6)

Therefore, any system can be expressed in the following way

Ĥ =

L∑
j

∑
i1<i2<···<ij

b
(j)
i1,i2,..,ij

τ̂ zi1 τ̂
z
i2 · · · τ̂

z
iL
. (2.7)

In other words, we constructed a function which assigns to any eigenstates {|En〉} a

sequence of {−1, 1},
f(|En〉)→ (a1

n, a
2
n, · · · , aLn). (2.8)

Thus,

τ̂ zj =
∑
n

fj(|En〉)|En〉〈En| 1 ≤ j ≤ L,

fj(|En〉) = ajn.

(2.9)

It is important to clarify that the construction of f is not unique, and consequently the

choice of {τ̂ zj }. Once the function f is defined, we can construct an entire set of operators

which obey the Pauli-matrix commutation relations [126]: {τ̂xj } and {τ̂yj }

[τ̂αi , τ̂
β
j ] = iδi,jεαβγ τ̂

γ
j α, β, γ ∈ {x, y, z}, (2.10)

where εαβγ is the anti-symmetric Levi-Civita tensor [126].

We say that the system is integrable (strongly-integrable) if there exists a map f and a

variable L̃ (1 ≤ L̃ < L) which does not depend on L, such that

Ĥ =

L̃∑
j

∑
i1<i2<···<ij

b
(j)
i1,i2,..,ij

τ̂ zi1 τ̂
z
i2 · · · τ̂

z
ij . (2.11)

We need to know only L constants of motion {τ̂ zj } and an algebraic number in L of

coefficients {b(1)
i , b

(2)
i,j , · · · , b

(L̃)
i1,..,iL̃

} to describe the system.

Non-interacting quantum systems are included in the definition of integrable systems.
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For example, let’s consider a one-dimensional fermionic quantum many-body system

(e.g., the Anderson-model, or the AAH-model in Chapter 1)

Ĥ =
∑
x,y

ĉ†xΩx,y ĉy, (2.12)

where {ĉ†j} ({ĉj}) are the fermionic creation (annihilation) operators ({ĉ†i , ĉj} = δi,j and

{ĉ2
j = 0}) , and Ω is a bounded symmetric real matrix (‖Ω‖ < ∞,Ωx,y = Ωy,x). Let

{φl(x)} and {εl} be respectively the single-particle eigenstates and eigenvalues

∑
y

Ωx,yφl(y) = εlφl(x). (2.13)

Defining the operators

η̂†l =
∑
x

φl(x)ĉ†x, (2.14)

we have:

Ĥ =
∑
l

εlη̂
†
l η̂l. (2.15)

Thus, a non-interacting system is integrable in the sense of the above definition with

L̃ = 1.

2.2 Quantum Thermalization in closed quantum systems

In this section we define, what it means for a closed quantum system to thermalize.

Let’s consider a strongly interacting isolated (closed) quantum many-body system of

volume V . Isolated here means that the system is neither coupled to an external bath,

nor to a reservoir. The system is described by a Hamiltonian Ĥ and we are interested

in its highly-excited eigenstates, meaning that we will not just focus on its low-energy

properties, but rather on eigenstates that belong to a finite energy density. Let |ψ〉 be

the initial state in which the system is prepared. The density matrix is simply given by

ρ̂(0) = |ψ(0)〉〈ψ(0)|, (2.16)

and it is a pure state since ρ̂2(0) = ρ̂(0).

The quantum time evolution of the system is described by

i
dρ̂(t)

dt
= [Ĥ, ρ̂(t)], (2.17)
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whose solution is given by

ρ̂(t) = Û(t)|ψ(0)〉〈ψ(0)|Û †(t), (2.18)

which is also a pure state.

We are interested in the long-time dynamics of the system and aim to know if the system

will eventually thermalize or not. If the system thermalizes, then the local memory of the

initial state will be completely lost. In this case the long-time dynamics of the evolved

state will be described by an equilibrium statistical density matrix (Boltzmann density

matrix), which depends only on few thermodynamic parameters, like the temperature

T , chemical potential µ etc..

lim
T̃→∞

lim
V→∞

1

T̃

∫ T̃

0
dtρ̂(t)→ e−β(Ĥ+µN̂+··· )

Z
, (2.19)

Z is the partition function, β = 1/T and N̂ is the particle-number operator.

It is important to give some remarks:

1. The definition requires

lim
T̃→∞

lim
V→∞

‖ 1

T̃

∫ T̃

0
dtρ̂(t)− e−β(Ĥ+µN̂+··· )

Z
‖ → 0. (2.20)

It is called convergence in the strong sense.

However, the strong-convergence is usually a too strict definition. Indeed, two

density matrices could describe the same physical system even if the norm of their

difference is not zero. A less demanding convergence is called convergence in the

weak-sense

lim
T̃→∞

lim
V→∞

1

T

∫ T̃

0
dtTr

[
ρ̂(t)Â

]
→ Tr

[
e−β(Ĥ+µN̂+··· )

Z
Â

]
∀Â observable.

(2.21)

The weak-convergence is definitely more appropriate and more physical, since in

an experimental setup usually only local observables are possible to be measured.

2. In the definition that we have given (Eq 2.19), we used the grand-canonical en-

semble. Nevertheless, any other thermodynamic ensembles (i.e. micro-canonical,

canonical) will give the same results, due to the equivalence between ensem-

bles [119].



28

3. We considered only time-averaged quantities, nevertheless it is also important that

the temporal fluctuations decay to zero in the thermodynamic limit

lim
T̃→∞

lim
V→∞

1

T̃

∫ T̃

0
dt

(
Tr
[
ρ̂(t)Â

]
− 1

T̃

∫ T̃

0
dtTr

[
ρ̂(t)Â

])2

→ 0

∀Â bounded observable.

(2.22)

4. The limits, V → ∞ and T̃ → ∞ should be taken simultaneously (i.e. V/T̃ =

constant).

5. The temperature T is not a well defined concept in a closed system, in this case

T is the parameter which controls the energy density in the system.

Nevertheless, a pure state can never thermalize, indeed the solution of Eq. 2.17 is still

a pure state and a rank-one operator can not converge to a Boltzmann density matrix,

which has rank larger than one. From a physical point of view it is also clear that

the solution of Eq. 2.17 will always conserve the information about the initial density

matrix [106]. Indeed, a closed system is meant to thermalize, if “it acts as its own

bath” [40, 106]. The last statement means that the system will thermalize locally. Let S̃

be a finite portion of the system (it contains only a finite number of degrees of freedom),

tracing out all the degrees of freedom outside S̃ (S̃c), we can define a density matrix

which acts only on the subsystem S̃

ρ̂S̃(t) = TrS̃c [ρ̂(t)] . (2.23)

The support of the density-matrix ρ̂S̃(t) is S̃, and in general ρ̂S̃(t) is not a pure state.

We will say that a closed system will thermalize in the strong-sense if

lim
T̃→∞

lim
S̃c→∞

1

T̃

∫ T

0
dtρ̂S̃(t)→ TrS̃c

[
e−β(Ĥ+µN̂+··· )

Z

]
. (2.24)

The thermalization on the subsystem S̃ can be defined also in the weak-sense (Eq. 2.21)

considering only observables Â with support in S̃.

The thermodynamic parameters T , µ, etc. are calculated by the set of equations

Tr[Ĥρ̂eq
S̃

(T, µ, ..)] = 〈ψ(0)|Ĥ|ψ(0)〉,

Tr[N̂ ρ̂eq
S̃

(T, µ, ..)] = 〈ψ(0)|N̂ |ψ(0)〉,

Tr[·ρ̂eq
S̃

(T, µ, ..)] = 〈ψ(0)| · |ψ(0)〉.
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Let {|En〉} be the eigenstates of Ĥ with eigenenergies {En}, then

|ψ(t)〉 =
∑
n

Cne
−iEnt|En〉, (2.25)

the coefficients {Cn} are simply given by {〈En|ψ(0)〉}, thus the only information about

the initial state is encoded in {Cn}. Let Â be an observable with support in S̃

A(t) = 〈ψ(t)|Â|ψ(t)〉 =
∑
n

|Cn|2An,n +
∑
n6=m

C?mCne
−i(Em−En)tAm,n, (2.26)

with Am,n = 〈Em|A|En〉. If there are no special symmetries and thus no energy degen-

eracy, then

lim
T̃→∞

1

T̃

∫ T̃

0
dtA(t) =

∑
n

|Cn|2An,n. (2.27)

If the system thermalizes ∑
n

|Cn|2An,n ≈ Aeq, (2.28)

where Aeq is the expectation value of Â at equilibrium (calculated with the Boltzmann

density matrix). It is important to add few remarks concerning the choice of the initial

state |ψ(0)〉 and on the choice of the subsystem.

1. The energy fluctuation must be sub-extensive in the number of degrees of freedom

in the system

δE =

√
〈ψ(0)|Ĥ2|ψ(0)〉 − (〈ψ(0)|Ĥ|ψ(0)〉)2 ∼ V −ν〈E〉 ν > 0, (2.29)

where 〈E〉 = 〈ψ(0)|Ĥ|ψ(0)〉 ∼ V .

2. We have taken the sub-system S̃ in such a way that the degrees of freedom inside

S̃ do not scale with the volume. This assumption could be relaxed as far as the

scaling of the degrees of freedom of S̃ scale sub-linearly with the volume.

2.2.1 Eigenstate thermalization hypothesis

In the previous section we defined what it means for a closed quantum system to ther-

malize. In this section, we state the eigenstate thermalization hypothesis (ETH). ETH

is a conjecture on the structure of the eigenstates, which gives an explanation of ther-

malization in closed quantum system.
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2.2.1.1 Thermalization in Random Matrices

Before providing the precise statement of ETH, let’s consider the case in which the

system is described by a symmetric random matrix. In this case, the entries of the

Hamilitonian Ĥ are independent equally distributed random variables. For this special

case it is possible to prove that the diagonal elements of any observable Â expressed in

the basis of the eigenstates of Ĥ are given by [45]

An,n = A+
1√
D
Rn,n, (2.30)

where D is the dimension of the matrix Ĥ, A is the normalized trace of Â (A = 1
DTr[A]),

and {Rn,n} are sign-alternating independent random variables. Moreover, the coeffi-

cients {Cn} (Eq 2.28) will be given by

Cn =
eiφn√
D

+
Sn
D
, (2.31)

and {Sn} are distributed in the same way as {Rn,n}.

∑
n

|Cn|2An,n ≈ A+
∑
n

(
Rn,n
D
√
D

+A
eiφnSn + c.c.

D
√
D

+A
|Sn|2

D2
+
|Sn|2Rn,n
D2
√
D

)
, (2.32)

since
∑

nRn.n ∼
√
D (central limit theorem), we have

∑
n

|Cn|2An,n ≈ A+O
(
D−1

)
. (2.33)

From Eq. 2.33 follows that any observable Â will thermalize to the equilibrium value

A, defined as the expectation value of Â at infinite temperature. Since the system is

described by a random matrix, its eigenstates are random vectors. Thus since all the

eigenstates are statistically equivalent, they must have the same weight in the thermod-

inamic ensemble (infinite temperature ensemble). In other words, the ensemble density

matrix will be proportional to the unity operator (ρ̂eq = I/D).

2.2.1.2 Thermalization in generic closed quantum many-body systems

In 1994, M. Srednicki gave an ansatz for the matrix elements of an observable Â of a

generic quantum many-body system [138]. This ansatz goes under the name of eigenstate

thermalization hypothesis:

Am,n = A(E)δn,m + e−S(E)/2fA(E,ω)Rn,m, (2.34)
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where E = En+Em
2 , ω = En − Em, and S(E) > 0 is the entropy of the system which

scales with the volume (S ∼ V ) and {Rn.m} are independent equally distributed sign-

alternating random variables. Furthermore, A and fA are smooth functions of their

arguments and A = Aeq (Eq. 2.28). Since the off-diagonal elements of Â (An,m with

n 6= m) are proportional to e−S(E)/2, they are exponentially small in volume compared

with the diagonal elements. The last statement is an important property, indeed in

Eq. 2.26 we defined thermalization in the limit T̃ tends to infinity. Formally, it means

that the time for equilibration T̃eq will scale exponentially with the volume T̃eq ∼ eV ,

since one needs to resolve the smallest difference between two eigenenergies (minn,m |En−
Em| ∼ e−ηV ). Nevertheless, the time for equilibration is usually finite, and this could be

explained by the exponential suppression in volume of the off-diagonal elements of Â in

Eq. 2.34. Moreover, the exponential suppression of the off-diagonal elements dominate

the time-averaged fluctuations of A(t)

σ2
A = lim

T̃→∞

1

T̃

∫ T̃

0
dt[A(t)]2 −

(
1

T̃

∫ T̃

0
dtA(t)

)2

, (2.35)

σ2
A =

∑
m,nνm

|Cm|2|Cn|2|Am,m|2 ≤ max
m,n
|Am,n|2

∑
m,n

|Cm|2|Cn|2 = max
m,n
|Am,n|2 ∼ e−S(E).

(2.36)

The time-averaged fluctuations are exponentially small in the number of degrees of

freedom in the system. The last scaling gives important information about the typical

value of the long-time dynamics of A(t). Indeed, when the system thermalizes, A(t) will

be close to the equilibration value most of the time. Nevertheless, it can be proved that

the fluctuations of the observable Â (bounded) decay algebraically in volume [40],

δA = lim
T̃→∞

1

T̃

∫ T̃

0
dt〈ψ(t)|(Â−Aeq)2|ψ(t)〉 ∼ V −1. (2.37)

2.2.1.3 Numerical evidence for the eigenstate thermalization hypothesis

In this section, we report some numerical results based on [40], which give strong evidence

that in non-integrable many-body quantum systems ETH holds. We start showing an

example that in integrable quantum systems ETH does not hold. In particular we

consider a non-interacting fermionic system, described by the Hamilitonian in Eq. 2.15,

in the case in which Ω is a bounded symmetric random matrix. Let |En〉 be an eigenstate

of Ĥ, and it is specified by the occupation numbers 〈En|η†l ηl|En〉 = aln with aln ∈ {0, 1},
where aln assumes the value zero if the single-particle mode with eigenvalue εl is non-

occupied and one otherwise. Let |Es〉 = η†l ηm|En〉 be another eigenstate of Ĥ, where

we assumed that the m(l)-mode is occupied (not-occupied) in |En〉. Evaluating the
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Figure 2.1: The panels show the diagonal elements in the basis of the eigenstates for
two operators: m̂(k = 0) (First row) and K̂ (Second row). The panels (a) and (d) show
the case in which the system is integrable (J ′ = V ′ = 0), while (b),(c),(e) and (f) the

non-integrable case (J ′ = V ′ 6= 0) [40].

off-diagonal element of the local operator ĉ†xĉx, we have

|〈n|ĉ†xĉx|m〉| = |ψl(x)ψm(x)|, (2.38)

since {ψl} are the eigenvectors of the random matrix Ω, |〈En|ĉ†xĉx|Es〉| ∼ O(1/L). Thus,

the off-diagonal elements do not decay exponentially in L as predicted by ETH.

Nevertheless, numerical simulations give strong evidence for the validity of ETH for a

large number of systems, ranging from strongly interacting fermionic (bosonic) lattice

systems to ultra-cold quantum gases [3, 19, 20, 104, 120, 127]. In the following, we

give few examples. Let’s consider a non-integrable one-dimensional system of hard-

core bosons with periodic boundary conditions, the Hamiltonian expressed in second-

quantization reads [40]

Ĥ =
L∑
j=1

{ − J(b̂†j b̂j+1 + h.c.) + V (n̂j − 1/2)(n̂j+1 − 1/2)

− J ′(b̂†j b̂j+2 + h.c.) + V ′(n̂j − 1/2)(n̂j+2 − 1/2), }

(2.39)

where {b̂†j}({b̂j}) are the creation (annihilation) operators for hard-core bosons ([b̂†i , b̂j ] =

δi,j and {b2j = 0}). The system is integrable if J ′ = V ′ = 0 and non-integrable otherwise

(e.g., J ′ = V ′ 6= 0). The following local observables are considered:
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1. The momentum mode occupation operator

m̂(k) =
1

L

∑
i,j

eik(i−j)b̂†i b̂j . (2.40)

2. The kinetic energy density operator

K̂ =
1

L

L∑
j=1

{−J(b̂†j b̂j+1 + h.c.)− J ′(b̂†j b̂j+2 + h.c.)}. (2.41)

Figure 2.2: The panel (a) shows the matrix elements mp,q(k = 0) for the integrable
case with L = 24 and for 100 eigenstates 1 ≤ p, q ≤ 100 with energy density close to
E/L = −0.16. The panel (b) shows mp,q(k = 0) for the non-integrable (J ′ = V ′ = 0.32)

case with the same L, but with E/L = −0.19 [40].

Figure 2.1 [40] shows the diagonal element of m̂(k = 0) and of K̂ in the eigenstates basis

of Ĥ as a function of energy density E/L. For J ′ = V ′ = 0 the system is integrable, and

we can notice (panel (a) and (d)), that the diagonal elements of the two local operators

are not smooth, and moreover the variance of the diagonal elements does not scale to zero

with increasing system size. In contrast, in the other panels J ′ = V ′ 6= 0 the system is

non-integrable, the diagonal elements are a smoother function of E/L compared with the

integrable case. Furthermore, the curves become smoother with increasing the system

size (Eq 2.37). Figure 2.2 [40] shows for a fixed system size and for a fixed energy

density the matrix elements (diagonal and off-diagonal) of m̂(k = 0), the eigenstates are

labeled with the letters {p, q} and they have been sorted by energy values. The first

panel (Fig. 2.2 (a)) shows m̂p,q(k = 0) for the integrable case (J ′ = V ′ = 0), where

it is visible that the diagonal elements m̂p,p(k = 0) present strong fluctuations, as we

have already discussed. Moreover, the off-diagonal elements m̂p,q(k = 0) with p 6= q are

also affected by strong fluctuations, indeed there are some off-diagonal matrix elements

which have the same order of magnitude as the diagonal elements, giving evidence that

ETH breaks down. For the non-integrable case (J ′ = V ′ 6= 0), the diagonal elements
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are approximately constant. The off-diagonal elements are highly suppressed compared

to the diagonal ones as expected since they are proportional to an exponentially small

value in L (∼ e−S(E)/2). Moreover, they do not have strong fluctuations, indicating that

their values depend only on the energy density.

2.3 Many-Body-Localization

We have stated ETH, which have used to show a possible explanation of thermalization

in closed quantum systems. In this section, we introduce the concept of many-body

localization (MBL).

MBL regards a class of closed interacting quantum many-body systems, which are robust

against weak perturbations [107] and do not thermalize (ETH does not hold) [106]. We

say that the system described by the Hamilitonian Ĥ is many-body localized, if there

exists a bijective map f between the eigenstates of Ĥ and the set of all possible sequences

of {−1, 1} of length L (Eq. 2.8), such that the Hamiltonian can be expressed in the

following way

Ĥ =
L∑
j

∑
i1<i2<···<ij

b
(j)
i1,i2,..,ij

τ̂ zi1 τ̂
z
i2 · · · τ̂

z
iL
, (2.42)

with {τ̂ zj } defined by f as in Eq. 2.9, crucially with

b
(j)
i1,i2,..,ij

∼ e−max |iα−iβ |/ξ. (2.43)

The couplings {b(1)
i , b

(2)
i,j , · · · , b

(L̃)
i1,..,iL̃

} couple only exponentially weakly the integrals of

motion {τ̂ zi }.

Moreover, there is a set of L observables {Âi} such that

[Âi, Âj ] = 0, [Âi, τ̂
α
j ] 6= 0 ∀i, j ∀α ∈ {x, y, z}, (2.44)

and ∣∣∣∣ 1

2L
Tr[τ̂ zi Aj ]

∣∣∣∣ ∼ e−|i−j|/ξ1 , (2.45)

where the observables {τ̂αi }, with α ∈ {x, y}, have been constructed to satisfy Eq. 2.10.

The choice of the observables {Âi} defines the space in which the system can be defined

to be localized. Indeed, the labels {i} could be connected with physical labels. For

example, they could be the site indices of the lattice and thus the observables {Âi}
could be taken as local density operators {n̂i} for fermionic systems or as Pauli matrices

{σ̂zi } for spin systems. In this case, we say that the system is many-body localized in
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space. Nevertheless, the labels {i} could also be the momentum indices and for example

{Âi} could be taken to be the momentum density operators. In the latter case, we say,

that the system is many-body localized in momentum space.

The last point can be better explained with an example. Let’s consider the following

Hamiltonian

Ĥ(0) =
L∑
i=1

hiσ̂
z
i , (2.46)

{hi} are independent identically distributed random variables and L is the length of the

chain. This model is integrable and it can be easily diagonalized. Its eigenstates are just

the product states in the σz-basis. We could say that this model is trivially localized in

space.

What happens to the eigenvectors of Ĥ(0) when the system is weakly perturbed ?

Let’s consider the following perturbation

Ĥ(1) =

L∑
i=1

γiσ̂
x
i +

L−1∑
i=1

Jiσ̂
z
i σ̂

z
i+1, (2.47)

where {γi} and {Ji} are independent identically distributed random variables. The

perturbed Hamiltonian is defined by

Ĥ = Ĥ(0) + γĤ(1), (2.48)

with γ > 0 the strength of the perturbation.

In 2016, J. Z. Imbrie, under minimal assumptions on the level energy statistics of Ĥ,

proved that for weak γ (γ � 1) the system is still localized in space [68]. In the sense

that:

1.

lim
L→∞

1

2L

∑
n

|〈En|σ̂zi |En〉| = 1−O(γk) ∀i, (2.49)

where the overline indicates the average over the disorder configurations.

2.

max
n
|〈En|ÔiÔj |En〉 − 〈En|Ôi|En〉〈En|Ôj |En〉| ≤ γ|i−j|/3, (2.50)

with probability 1 − (γk)1+(log |i+j|)2 , where Ôi is any operator formed by the

product of σ̂xi and σ̂zi .

As a consequence, we could say that the eigenstates of Ĥ for weak γ � 1, are close to

the eigenstates of Ĥ(0).
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Moreover, in his proof J. Z. Imbrie defines a map f which connects the non-interacting

eigenstates of Ĥ(0) with the eigenstates of Ĥ constructing a unitary operator Û given by

the product of local unitary operators such that

Û†ĤÛ =
∑
j

∑
i1<i2<···<ij

b
(j)
i1,i2,..,ij

σ̂zi1 σ̂
z
i2 · · · σ̂

z
ij , (2.51)

and

τ̂ zi = Û σ̂zi Û†, [τ̂ zi , Ĥ] = 0. (2.52)

Recapitulating, for γ � 1, the model is many-body localized in the real-space, meaning∣∣∣∣ 1

2L
Tr[τ̂αi σ̂

β
j ]

∣∣∣∣ ∼ e−|i−j|/ξα.β α, β ∈ {x, y, z}. (2.53)

Furthermore, in many-body localized systems a weak form of integrability is restored.

Indeed, we could define a system as weakly-integrable if for any ε > 0 there exists a map

f and a variable L̃(ε) (1 ≤ L̃(ε) < L) which does not depend on L, such that

‖Ĥ − ĤL̃(ε)‖ ≤ ε, ∀L ≥ L̃(ε),

ĤL̃(ε) =

L̃(ε)∑
j

∑
i1<i2<···<ij

b
(j)
i1,i2,..,ij

τ̂ zi1 τ̂
z
i2 · · · τ̂

z
ij .

(2.54)

with limε→0 L̃(ε)→∞.

Thus, many-body localized systems are weakly-integrable systems, nevertheless it is

important to point out that our definition of weakly-integrability also include systems

for which b
(j)
i1,i2,..,ij

∼ 1/max |iα − iβ|α with α > 1 + δ for any δ > 0 (power-law many-

body localized system).

2.3.1 Localization in Fock Space

As we have described in the previous section, J. Z. Imbrie constructed a map which

connects the eigenstates of Ĥ(0) with the eigenstates of Ĥ via local small unitary op-

erations [68]. It underlines that the final eigenstates of Ĥ are adiabatically connected

with the eigenstates of Ĥ(0) [18], in the same way that the localized eigenstates of an

Anderson problem are connected with the site states of the lattice system [67]. Indeed,

the original idea of mapping a non-extensive disordered quantum many-body system like

a quantum dot to a localization problem in the Fock space has constructed a fundamen-

tal link between Anderson localization on hierarchical tree structures and many-body

physics [6]. The MBL problem that we have described in the previous section, can be
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Figure 2.3: The Hamiltonian Ĥ (Eq. 2.48) can be mapped to an Anderson localization
problem in Fock space. The Figure shows a graphical representation of the Fock space
graph with L = 4 in which Ĥ can be mapped. Any point in this hypercube represents

a product state in the σz-basis.

mapped onto an Anderson localization problem on a hypercube. Without loss of gen-

erality, let’s consider the system defined by the Hamiltoninian Ĥ (Eq. 2.48). In the

limit γ → 0, Ĥ is simply given by the sum of {σ̂z} operators, and its eigenstates are

product states in the σz-basis. Thus we can think of the σz-basis to be the sites of a

hypercube. Turning on the perturbation (Ĥ(1)) an effective hopping is introduced in

the hypercube. This is illustrated in Fig. 2.3, which shows the system with L = 4, the

number of sites is given by the dimension of the Hilbert space (D = 2L) and a point in

the hypercube represents a state in the Fock space in the σz-basis. The term
∑

j γj σ̂
x
j

produces a hopping between different sites which differs by only one spin flip operation.

The connectivity of this graph scales as L and the on-site energies in the graph are

simply given by
∑

i hiai+
∑

i Jiaiai+1, with aj ∈ {−1, 1}. Thus, Ĥ can be mapped onto

an “Anderson′′ model on a graph, in which the connectivity grows with L and in which

the on-site energies are correlated random variables with typical fluctuations of order

O(
√
L). However, the difference between the on-site energies that are directly linked in

the graph does not scale with L (∼ O(1)).

One could ask if the system is localized in the sense of Anderson localization (Chapter 1)

on the graph constructed in the Fock space. D.M. Basko, I.L. Aleiner and B.L. Altshuler
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in their seminal work [17], demonstrated for a model of weakly-interacting disordered

fermions that the system is localized in the sense of Anderson localization in the graph

constructed taking the eigenstates of the non-interacting model. Remarkably, they also

proved that a delocalization-localization transition happens as a function of disorder

strength and energy density. This transition, which is called MBL transition, defines

two phases: an ergodic phase where the eigenstantes are delocalized in this Fock space

graph and are thermal, and a many-body localized (MBL phase) in which the system is

localized. Nevertheless, several works claim that a genuine localization in Fock space is

not possible, meaning that the eigenstantes are spread only on a sub-extensive portion

of the Fock space (e.g., ∼ logD, D is the dimension of the Hilbert space) [18, 93, 95].

In the next section, we show numerical results based on the works [16, 31, 95, 110,

130, 149], which give evidence of the existence of the two phases and thus of the MBL

transition.

2.3.2 Numerical evidence of Many-Body Localization

The existence of a delocalization-localization transition has been confirmed in several

works, which also underline the ergodicity breaking in the MBL phase.

Due to the exponential growth of the Hilbert space with system size, most of the nu-

merical works focus on one-dimensional systems. The most studied model with an MBL

transition is the spin-1/2 Heisenberg model [31, 95, 110, 130, 149]

Ĥ =
L∑
i

hiŜ
z
i +

L∑
i

J Ŝi · Ŝi+1, (2.55)

where Ŝi = {Ŝxi , Ŝ
y
i , Ŝ

z
i }, with Ŝαi = 1

2 σ̂
α
i , and {hi} independent random fields equally

distributed between [−h, h] and L is the length of the chain. The Hamiltonian com-

mutes with the total spin operator ŜzTot =
∑L

i Ŝ
z
i ([Ĥ, ŜzTot] = 0), which implies the

conservation of the magnetization in the z-direction. This model can be mapped onto

the t-V spinless fermion chain via the Jordan-Wigner transformation [8]

σ̂+
j = e−iπ

∑j−1
k ĉ†k ĉk ĉ†j ,

σ̂−j = e+iπ
∑j−1
k ĉ†k ĉk ĉj ,

σ̂zj = 2n̂j − 1.

(2.56)
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giving

Ĥ :=− J

2

L∑
i=1

ĉ†i ĉi+1 + h.c.+
L∑
i=1

hj

(
n̂i −

1

2

)

+ J

L∑
i=1

(
n̂i −

1

2

)(
n̂i+1 −

1

2

)
.

(2.57)

In Chapters 3-5 we will use the Hamiltonian (Eq. 2.57) expressed in the particle lan-

Figure 2.4: The panel shows r for several system sizes as a function of the disorder
strength h for the Hamiltonian Ĥ Eq. 2.55 [95].

guage.

2.3.2.1 Analysis of the level statistics

A powerful method to distinguish an ergodic phase from a localized phase is to study

the energy spectrum of Ĥ (Eq 2.55) [64]. The resistance to have crossing of levels

(level repulsion) is a well known property of ergodic systems. Indeed, motivated by

the Bohigas-Giannoni-Schmit conjecture [23] the statistic of level spacing of an ergodic

system is expected to be the same as that of a random matrix belonging to the same

symmetry class [64]. The probability distribution for the level spacing for random matri-

ces in the Gaussian Orthogonal ensemble (GOE) is the Wigner-Dyson distribution [64],

and thus we expect to find the same distribution in the ergodic phase. On the contrary,

in the localized phase, due to existence of (quasi-)local integrals of motion, the energy

levels will tend to cross each other (level-crossing). In this case, the probability distri-

bution of the level spacing is expected to be Poissonian [51, 64]. To distinguish these

two distributions (Wigner-Dyson, Poisson), it is useful to define the following quantity,
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known as level spacing parameter [107]

r(n) = min(δ(n), δ(n+1))/max(δ(n), δ(n+1)),

δ(n) = En+1 − En.
(2.58)

It is possible to prove that in the case where the probability distribution is the Wigner-

Dyson distribution, the average over the eigenstates index n of r is equal to rGOE ≈
0.5307, while in the case of level-crossing rPoisson = 2 log 2 − 1 ≈ 0.3863 [107]. Fig-

ure 2.4 [95] shows the level spacing parameter (r) as a function of the disorder strength

h for several system sizes L for the Hamiltonian (Eq. 2.55). r has been obtained by av-

eraging over disorder and over eigenstates with a fixed energy density ε which is defined

by ε = (E−Emin)/(Emax−Emin) (ε = 0.5, middle of the spectrum). For weak disorder,

r ≈ rGOE indicating that the system is ergodic, increasing the disorder strength the

value of r drops monotonically to rPoisson which for values h ≥ 4.5 seems to be indepen-

dent of system size. The curves for different system sizes L cross each other at a value

around hc ≈ 3.7, giving a strong evidence of a possible transition. Indeed, it is possible

to collapse the curves for different L making a finite-size scaling analysis with the use

of a scaling-function of the form g[L1/ν(h− hc)], as shown in the inset of Fig. 2.4, with

ν ≈ 0.91.

Nevertheless, recently it has been shown, that r can have the value rGOE even if the

probability distribution of the level spacing is not the Wigner-Dyson distribution [83].

This is one of the reasons why only an analysis of the level spacing parameter (r) is not

sufficient to distinguish an ergodic from a localized phase. In the next sections we probe

the existence of the transition using different approaches.

Figure 2.5: The panels show the renormalized with system size bipartite entanglement
entropy S/L (SE in the figure) as a function of L for several disorder strengths h and

at energy density ε = 0.5 [95].
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2.3.2.2 Eigenstates analysis

In the previous section we showed how to detect the MBL transition studying the spec-

trum of the Hamiltonian. In this section, we show a complementary analysis, which

consists in studying the eigenstates of Eq. 2.55.

We start with a probe borrowed from quantum-information theory [8]. This is the Von

Neumann entanglement entropy (EE), which measures the spread of information of one-

part of the system to the other. Dividing the system in two separated parts, the bipartite

EE is defined by

S =− TrÃ[ρ̂Ã ln ρ̂Ã],

ρ̂Ã =TrÃc [|En〉〈En|],
(2.59)

where Ã = [1, ..., L2 ]. The reduced density matrix ρ̂Ã of eigenstates obeying ETH is

expected to be thermal, and the EE will scale with the size of the system S ∼ L. For

localized eigenstates, we expect in one-dimensional system, that the EE will not scale

with system size S ∼ O(1). Indeed, if an eigenstate is localized in the real-space, then

only closed by sites are entangled, hence the EE will scale only with the size of the

boundary of the region traced out, thus implying for a generic system in d-dimensions,

S ∼ Ld−1. Figure 2.5 [95] shows S/L (SE/L in the figure) as a function of L for several

values of h averaged over disorder and over eigenstates in the middle of the spectrum

(ε = 0.5). A clear change in the behavior of S/L, at disorder value hc ≈ 3.6 is visible.

For h ≤ hc, S/L is almost a constant as a function of L, giving indication that S is

an extensive quantity. For h ≥ hc, S/L starts to decrease for large L implying that S

is at least subextensive, in contrast with ETH. A collapse of several curves is possible,

using a scaling-function of the form g[L1/ν(h − hc)], as shown in the inset of Fig. 2.5,

suggesting the existence of the MBL transition.

A similar behavior can be observed for the bipartite fluctuation of a subsystem [135],

which is defined by

F =〈En|(ŜzÃ)2|En〉 − (〈En|(ŜzÃ)|En〉)2,

Ŝz
Ã

=

L/2∑
i

Ŝzi .
(2.60)

F measures the quantum fluctuations of the operator Ŝz
Ã

. For a localized system, since

its degrees of freedom are frozen, we expect limL→∞F/L→ 0, while in a thermal phase

F will be an extensive quantity. Figure 2.6 [95] shows F averaged over disorder as a

function of h for several system sizes, but for a different energy density ε = 0.3. Also
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Figure 2.6: The panel shows F (Eq. 2.60) for several L as a function of h, with ε = 0.3
(energy density) [95].

in this case, at h ≈ hc(ε), a change in its behavior occurs as observed for the EE. This

gives an indication that the MBL transition depends on the value of energy density

hc(ε = 0.3) ≤ hc(ε = 0.5).

As we already discussed, in the ergodic phase the eigenstates are expected to be thermal,

thus ETH should hold. A possible way to check if ETH holds is to consider expectation

values of local observables for eigenstates which belong to the same energy density in

the thermodynamic limit. For example defining

mn
i = 〈En|Ŝzi |En〉,

|mn
i −mn+1

i | = |〈En|Ŝzi |En〉 − 〈En+1|Ŝzi |En+1〉|.
(2.61)

On the one hand if the eigenstate |En〉 is thermal, the expectation value of Ŝzi is just

described by the energy density ε, and thus by ETH

|mn
i −mn+1

i | ∼ e−αL α > 0. (2.62)

On the other hand if the system is localized then the expectation value mn
i will be

different also for two eigenstates which belong to the same energy density. In fact,

considering the limiting case of infinite disorder (h → ∞), for which the system is

trivially localized in the σz-basis, mn
i takes with equal probability the values 1

2 or −1
2 ,

giving

|mn
i −mn+1

i | ∼ O(1). (2.63)

Figure 2.7 [110] shows the logarithm of |mn
i − mn+1

i | averaged over disorder config-

urations and over few eigenstates in the middle of the spectrum. For large disorder,

|mn
i − mn+1

i | is independent of L, while for weak disorder where ETH should hold,

|mn
i −m

n+1
i | decays exponentially with L.
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Figure 2.7: The panel shows the logarithm of |mn
i − m

n+1
i | averaged over disorder

and over eigenstates in the middle of the spectrum for several values of h as a function
of L. In the ergodic phase this difference decay exponentially with L (ETH), while in

the localized phase |mn
i −m

n+1
i | does not decay [110].

2.3.2.3 Integrals of motion

We have seen that many-body localized systems are characterized by an extensive num-

ber of quasi-local integrals of motion. Several methods have been proposed to construct

the quasi-local integrals of motion {τ̂ zi } for an MBL system [31, 123, 128]. In this section,

we describe a method proposed by A. Chandran et al. [31], which constructs the inte-

grals of motion considering the long-time evolution of a local-observable. The advantage

of this method resides on its simple physical interpretation, however these integrals of

motion do not obey the Pauli commutation relations.

Let’s consider the system described by the Hamiltonian Ĥ (Eq. 2.55), and the following

initial state

ρ̂ = 2−L(1 + σ̂zi )⊗ Iic , (2.64)

where Iic is the identity operator outside the site i. The density matrix ρ̂ describes a

state where the magnetization is zero outside the site i and one at site i. Moreover, all

the other correlation functions are zero.

Tr[ρ̂σ̂zj ] = δi,j ,

Tr[ρ̂σ̂zj σ̂
z
k] = 0 j 6= k.

(2.65)

Let’s consider the time evolution of the density matrix ρ̂(t) = Û †(t)ρ̂Û(t), with Û(t) =

e−iĤt. If the system is ergodic, in the long-time limit the local magnetization will be
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Figure 2.8: The panel shows Mi,j (Eq. 2.69) as a function of |i − j| for several L
and several values of disorder strength W ∈ {2, 3, 3.5, 5, 7} from top to bottom. It
gives evidence that the integrals of motion that have been constructed are quasi-local

in space [31].

the same at any site and since the total magnetization is conserved

lim
t→∞

Tr[ρ̂σ̂zj ] ∼
1

L
“for ergodic systems”. (2.66)

In contrast, in the MBL phase, since ergodicity breaks down, even at long-time the

evolved state will still remember the initial state (ρ̂(0)) and thus one would expect that

the profile of the magnetization will have an exponentially decaying envelop centered at

the site i

lim
t→∞

Tr[ρ̂σ̂zj ] ∼ e−|i−j|/ξ “for many-body localized systems”. (2.67)

This can be better formalized by taking the long-time average

ρ̂ = lim
T̃→∞

1

T̃

∫ T̃

0
dtρ̂(t). (2.68)

Thus, we have

Mi,j = Tr[ρ̂σ̂zj ] =
1

2L
Tr[σ̂zi σ̂

z
j ], (2.69)

where

σ̂zi = lim
T̃→∞

1

T̃

∫ T̃

0
dtσ̂zi (t). (2.70)

Moreover, {σ̂zi } are integrals of motion
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[Ĥ, σ̂zi ] = 0 [σ̂zi , σ̂
z
j ] = 0, ∀i, j. (2.71)

Figure 2.8 [31] shows Mi,j as a function of the distance |i− j| for several L and W . As

expected, for large values of W , Mi,j decays exponentially in the distance between sites

(Mi,j ∼ e−|i−j|/ξ), while for smaller values of W , Mi,j is almost constant.

2.3.2.4 Many-body mobility edges

In this section, we summarize the results that we have reported, and we show the

complete phase diagram for an MBL system [95]. The study of eigenstates and of

the spectral properties of Ĥ (Eq 2.55) give evidence for the existence of two phases.

An ergodic phase in which the eigenstates are ergodic and ETH holds, and another

phase called MBL phase where the eigenstates are localized and ergodicity breaks down.

Furthermore, the ergodic phase is characterized by having Wigner-Dyson level spacing

statistic (r ≈ rGOE) and the eigenstates are volume-law (S ∼ L). The MBL phase

has Poissonian level spacing statistics (r ≈ rPoisson) and its eigenstates are area-law

(S ∼ L0). The localized phase is also characterized by the existence of an extensive

number of quasi-local integrals of motion ({τ̂ zi }). Moreover, we have also seen that

Figure 2.9: The panel shows the full phase diagram for the Hamiltonian Eq. 2.55
(disorder strength (h) - energy density ε) [95].

the critical value of the MBL transition (hc) is energy density dependent hc(ε). The

collection of these results gives rise to the phase-diagram for the MBL transition of

Ĥ (Eq 2.55). Figure 2.9 [95] shows the phase diagram (disorder strength (h) - energy

density ε). It gives evidence for the existence of an MBL transition also at a finite energy

density (highly-excited quantum phase transition) and thus of the existence of a many-

body mobility edge (MBME). In the literature, energy density and the word temperature

are used interchangeably (quantum phase transition at finite temperature) [106].



46

In other words, for large values of h, the system is always localized (h ≥ hc(ε = 0.5) ≈
3.5). For smaller values of h, the energy spectrum can host separated bands which are

composed of ergodic states or of localized states.

Nevertheless, it is important to point out that recently the existence of MBME has been

questioned [42]. W. De Roeck et al. [42], using perturbation theory and assuming that

ETH holds in the ergodic phase, argued that thermal local-fluctuations in eigenstates

could destabilize the localized phase, forbidding the existence of MBME.

In the next section, we show some properties of the quantum dynamics of many-body

localized systems.

2.3.2.5 Absence of transport

MBL systems are characterized by having no transport, as has been shown in the seminal

works [17, 62]. It can be showed numerically considering the spin-spin correlator

C(r, t) =
1

2L
Tr[ŜzL/2(t)ŜzL/2+r]. (2.72)

The correlator C(r, t) gives direct information on the d.c. conductivity of the model [149].

In the ergodic phase, diffusion should take place, and at long-time the correlator should

have a Gaussian form, C(r, t) ∼ e−
1
2 ( r
Dt

)2

√
2πDt

with D the diffusion constant. For a localized

system, at long-time C(r, t) does not decay to zero, and it is expected to have the

form C(r, t) ∼ e−r/ξ. Figure 2.10 (a) [149] shows C(r, t) in a log scale for the non-

Figure 2.10: The panel (a) show the spin-spin correlator (Eq 2.72) for the non-
interacting case. The panel (b) shows C(r, t) for the interacting case in the localized

phase. [149]

interacting case (Ĥ(0) =
∑L

i hiŜ
z
i +
∑L

i J(Ŝxi Ŝ
x
i+1 + Ŝyi Ŝ

y
i+1)) which can be mapped onto

an Anderson model. At short time the propagation is ballistic (t ≤ 1/J), while at long-

time the propagation is frozen as expected for localized systems and C(r, t) ∼ e−r/ξ.
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The same picture is unchanged if interaction is switched on (at least for strong disorder

or weak interaction strengths) as is shown in Fig. 2.10 (b).

2.3.2.6 Unbounded growth of Entanglement

As we have already discussed, localized systems are characterized by the absence of trans-

port (e.g., spin-spin diffusion, energy diffusion). Nevertheless, MBL systems have the

peculiarity that information can still propagate, contrary to a localized non-interacting

system, in which information propagation is also absent. Indeed, starting with a random

Figure 2.11: The panel (a) shows S(t) as a function of t for several interaction
strengths Jz for a fixed L. In this panel the system is always in a localized phase. for
Jz = 0 the system is Anderson localized and information propagation is absent (also
panel (b), S∞ ∼ L0), while for Jz 6= 0 the system is interacting and S(t) ∼ log(t).
The panel (b) shows that the saturation value of S(t) in the interacting case follows a

volume-law (S∞ ∼ L) [16].

product state in the σz-basis and evolving it, the bipartite entanglement entropy grows

logarithmically with time (S(t) ∼ log(t)) in the MBL phase. Contrary, for the non-

interacting case, no propagation occurs (limt→∞ S(t) ∼ constant). Figure 2.11 (a) [16]

shows S(t) as a function of t for several interaction strengths (Jz in the figure ) for a

fixed system size. As we anticipated, S(t) for the non-interacting case just saturates to a

constant. As the interaction is switched on, a slow logarithmic propagation of informa-

tion is visible. It is important to note (Fig. 2.11 (b)) [16] that the long-time saturation

value of S(t) scales linearly with system size (S∞ = limt→∞ S(t) ∼ L). If the system is

ergodic, then the entanglement will spread balistically [94], and at long-time for finite

systems, it will saturate to the value, S∞ = L log 2 − 1
2 + O( logL

L ) [109]. Indeed, the

evolved random product state in an ergodic system spreads in the Fock space, and its

long-time limit can be approximated with a random state in the Fock space, and the

bipartite entanglement entropy of a random state is L log 2 − 1
2 + O( logL

L ). Neverthe-

less, for an MBL system S∞ is smaller than the value expected for an ergodic system,
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Figure 2.12: The panel shows a graphical representation of the dephasing mechanism
due by interaction (V 6= 0), which is the reason of the log-information propagation in

the MBL phase [130].

giving indication that even if the long-time evolved state is a volume-law state, it is

non-thermal.

The reason of this slow logarithmic spread of information is due to a dephasing mech-

anism originating from interactions which is able to entangle degrees of freedom far

away in space [130]. It is easier to understand this dephasing mechanism in the particle

language rather than in spin language. If the interaction is absent, the eigenstates are

Slater determinants of the single-particle eigenstates, and they are completely specified

by the occupations of the single-particle levels. Moreover, the eigenvalues are sum of

the single-particle eigenenergies. For weak interactions to first order approximation, the

eigenstates are those of the non-interacting case, nevertheless, the interactions will cor-

relate and dephase the eigenenergies. Let’s consider the simple case in which only two

particles are present in the system and consider the following initial state

|ψ0〉 =
1

2
(η̂†1η̂

†
2)(η̂†3η̂

†
4)|0〉, (2.73)

where η̂†i creates an excitation localized in space. Suppose that the distance between the

support of the excitation (1,2) and (3,4) x is large (x >> ξ) (Fig 2.12 [130]), where ξ

is the localization length of the non-interacting problem. If the interaction is absent no

entanglement will be generated during the time evolution. Nevertheless, the interactions

generate a correlation between single-particle eigenenergies. With the use of first order

perturbation theory, Eα,β = εα + εβ + δEα,β, δEα,β ∼ Cα,βJe−x/ξ. The reduced density

matrix for the first particle is given by:

ρ̂(t) =
1

2

(
1 F (t)/2

F ?(t)/2 1

)
, (2.74)

where F (t) = e−iΩt(1 + e−iδΩt), with δΩ = δE1,4 − δE1,4 − δE1,3 + δE2,3 and Ω =

ε1 − ε2 + δE1,3 − δE2,3. At time, t = (2n + 1)2π/δΩ the state will be maximally
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entangled (S = log 2). Moreover, the time to reach this value scales exponentially with

x (distance between single-particle modes), giving rise to the logarithmic growth. This

gives the main idea of the mechanism for which the presence of interaction produces

entanglement propagation through the system.



Part II

Detecting the Many-Body

Localization transition and

characterization of the ergodic

and many-body localized phases
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In the next two chapters we present two complementary methods to detect the MBL

transition and to give a characterization of both the ergodic phase and the MBL phase.

In the first approach, borrowing concepts from quantum-information theory, we show

that the quantum-mutual information is an efficient probe to detect the MBL

transition. In the second one, giving a characterization of time-irreversibility, we give

a complementary description of the two phases. Moreover, we show, how these two

methods can be used to distinguish an Anderson-insulating phase from an MBL

localized phase.



Chapter 3

Quantum Mutual Information as

a Probe for Many-Body

Localization

As we have already discussed, several quantities have been proposed to characterize a

many-body localized (MBL) phase and to detect the MBL transition (Chapter 2). More-

over, new advancements in experimental techniques allowed to obtain the first evidence

of the existence of a localized phase and the presence of a transition [24, 97, 129, 137].

Nevertheless, one of the issues in the experiments has been to distinguish an Anderson

insulator phase from an MBL phase. As we have shown in Chapter 2, the growth of

the entanglement entropy after a global quench shows different behavior between the

two phases: in the Anderson insulator phase it saturates and in the MBL phase it

grows logarithmically. However, measuring entanglement entropy in an experimental

setup is challenging due to its nonlocal nature [69]. Only few local measurements have

been proposed to distinguish an Anderson insulator from an MBL phase. For example,

M. Serbyn et. al. [131], considering the evolution of local observables after a quantum

quench, found that the time-fluctuations decay algebraically with time in an MBL phase,

while in the Anderson insulator phase the time-fluctuations do not decay. They relate

this decay to the entanglement growth in an MBL phase, and moreover they relate the

rate of the decay to a characteristic localization length. Nevertheless, usually the study

of time-fluctuations are difficult in an experimental setup since the time scale to study

them are too large, and thus the system can not longer be considered closed.

In this chapter, we demonstrate that the quantum mutual information (QMI) between

two separated sites is a useful probe to study MBL, and moreover it can be used as a

dynamical indicator to distinguish an Anderson insulator from an MBL phase. Moreover,
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the QMI between two sites, being a local measurement, can in principle be used in an

experimental setup to detect the transition and to distinguish between an Anderson

insulator and an MBL phase, without the need to compute an extensive many body

density matrix [8].

This chapter is structured as follows: In the first part of this chapter, with the aim

to make it self-consistent, we describe the models that we will study. Then, we will

define the QMI and explain its properties. In the second part, we will benchmark our

conjectures in the non-interacting Aubrey-André-Harper model (Chapter 1), and in the

disordered t-V spinless chain (Chapter 2). In the last part of this chapter, we will show

how the QMI can be used as a dynamical indicator to distinguish an Anderson insulator

from an MBL phase.

3.1 Models

The Hamiltonian reads

Ĥ =− t

2

L−1∑
j=1

ĉ†j ĉj+1 + h.c.+
L∑
j=1

hj

(
n̂j −

1

2

)

+ V

L−1∑
j=1

(
n̂j −

1

2

)(
n̂j+1 −

1

2

) (3.1)

where ĉ†j (ĉj) is the fermionic creation (annihilation) operator at site j and n̂j = ĉ†j ĉj ,

{hj} are random fields, t and V are respectively the hopping and the interaction strength,

L the system size and N = L
2 the number of fermions. We consider two different cases

that have a metal-insulator transition:

1. The noninteracting AAH model (Chapter 1), which is obtained from Ĥ (3.1) with

V = 0, t = 2 and hj = W cos(2πjφ+α) where α = 1+
√

5
2 is the golden ratio and φ

is a random phase uniformly distributed in [0, 2π]. As we have shown in Chaper 1,

the AAH model is known to have a metal-insulator transition at Wc = 2 (extended

phase for W ≤Wc and localized phase for W > Wc). The localization length close

to the transition diverges as ξloc ∼ log−1 W
2 (Chapter 1).

2. The t-V spinless fermionic disordered chain (Chapter 2) is obtained by choosing

t = V = 1, and {hj} independent random variables uniformly distributed in

[−W,W ]. This t-V chain is believed to have an MBL transition at a critical

disorder strength Wc = 3.5± 1 (extended for W < Wc and localized for W > Wc),

as discussed in Chapter 2.
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Extended Localized

Figure 3.1: Qualitative behavior of the QMI in the two different phases of the in-
teracting disorder model Ĥ (3.1) for a fixed disorder configuration. t = V = W = 1
(left) and t = V = 1 W = 5 (right). The red dots represent the sites of the chain and
the thickness of the blue bonds between sites {i, j} is proportional to the magnitude of

I([i],[j])
maxi,j I([i],[j]) averaged over 16 eigenstates in the middle of the spectrum.

3.2 Quantum Mutual Information

The mutual information measures the total amount of classical and quantum correlations

in the system and has been successfully used to study phase transitions [4, 11, 33, 66, 98–

100, 136, 140, 146, 157, 158]. The QMI for two spatial subsets of the system A,B ⊆ [1, L]

is defined as [8]:

I(A,B) := S(A) + S(B)− S(A ∪ B) (3.2)

where S(A) is the Von Neumann entropy S(A) = −Tr[ρA log ρA] with ρA the reduced

density matrix of the subset A calculated using an eigenstate of Ĥ. Figure 3.1 shows the

typical behavior of I([i], [j]) for a given disorder configuration in two different phases

(extended/localized) for all possible combination of bonds {i, j}. The thickness of the

lines that connect i↔ j represents the magnitude of I([i],[j])
maxi,j I([i],[j]) . In the extended phase

(Fig. 3.1, left panel) the strongest bonds are the first neighbors {i, i+1} but nevertheless

all the other combinations of bonds have almost the same magnitude indicating that in

the extended phase all sites are entangled with each other. Note that in the thermody-

namic limit for ergodic infinite temperature states where a random-matrix assumption

is supposed to be valid, we expect I([i],[j])
maxi,j I([i],[j]) to be a constant independent of {i, j}.

In contrast, in the localized phase (Fig. 3.1, right panel) each site is mainly entangled

with neighboring sites and the QMI is almost zero for distant sites. Particularly, the

QMI between two sites {i, j} in a fermionic system with a fixed number of particles is

given by

I([i], [j]) := S([i]) + S([j])− S([i] ∪ [j]) (3.3)
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where

S([i]) =− 〈ni〉 log〈ni〉

− (1− 〈ni〉) log (〈1− ni〉) ,
(3.4)

S([i] ∪ [j]) =− 〈ninj〉 log〈ninj〉

− 〈(1− ni)(1− nj)〉 log〈(1− ni)(1− nj)〉

− λ+ log λ+ − λ− log λ−,

(3.5)

and

λ± =
〈(ni + nj)

2〉 ±
√
〈ni − nj〉2 + 4|〈c†icj〉|2

2
, (3.6)

where 〈·〉 is the expectation value in an eigenstate of Ĥ. The computation of the QMI

requires only the knowledge of two point correlation functions (i.e. 〈ninj〉) and the

expectation values of the local densities (〈ni〉).

Furthermore, in the case of one particle (N =1) the QMI reduces to

Ij =− |ψ1|2 log |ψ1|2 − (1− |ψ1|2) log(1− |ψ1|2)

− |ψj |2 log |ψj |2 − (1− |ψj |2) log(1− |ψj |2)

+ (|ψ1|2 + |ψj |2) log(|ψ1|2 + |ψj |2)

+ (1− |ψ1|2 − |ψj |2) log(1− |ψ1|2 − |ψj |2).

(3.7)

To quantify this behavior, we focus our study on Ij = I([1], [j + 1]), from which we can

define a correlation length

ξ−1 := − lim
j→∞

1

j
log
Ij
I1

= lim
j→∞

ξ−1
j , (3.8)

where the overline stands for disorder average. We expect that in the localized phase Ij
decays exponentially in j (Ij ∼ e−

j
ξ ), thus ξ−1 will be nonzero. Instead, in the extended

phase we expect a decay of Ij slower than exponential, implying ξ−1 is zero in the

thermodynamic limit. The exponential decay of Ij implies, via the Pinsker’s inequality,

that all two point correlation functions also decay exponentially with the distance [59].

This definition of a correlation length is related to the single particle localization length

ξloc, which has been discussed in Chapter 1

ξ−1
loc := − lim

j→∞

1

j
log
|ψj |
|ψ1|

, (3.9)
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with ψj the single particle wave function evaluated at site j. Using Eq. 3.7, and assuming

ψj is an exponential function of j

log Ij ∼ log |ψj |2 + log

(
1− log |ψj |2 + log

|ψ1|2

1− |ψ1|2

)
for large j, implies

ξ ∼ 2ξloc. (3.10)

As a further measure of the spread of the QMI we interpret
{
pj =

Ij∑
m Im

}
as the values

of a discrete probability distribution and take its variance

σ2 :=
∑
j

j2pj −

∑
j

jpj

2

. (3.11)

Since we expect Ij to decay exponentially fast with j in the localized phase, σ should

saturate with system size in this phase. However, it is important to note that σ can still

saturate for algebraically decaying Ij (i.e., Ij ∼ 1
j3+η

for any η > 0), thus this quantity

can only be used to detect a lower bound of the transition point.

3.3 Quantum mutual information for the Aubry-André-

Harper model

We start by benchmarking our expectations on the behavior of the QMI in different

phases for the AAH model. We compute Ij for this model using a free fermion technique

(Appendix A) for eigenstates of Ĥ constructed as a Slater determinant taking random

single particle eigenstates, which implies an effective infinite temperature ensemble. The

two lower panels of Fig. 3.2 show ξ−1
j as a function of j, for two different values of W ,

in the extended phase (W = 1.5) and in the localized phase (W = 2.2). In the extended

phase it decays to zero with a saturation point which scales as the inverse of the system

size with a logarithmic correction due to the normalization of the single particle wave

functions (ξ−1 ∼ logL
L ). In the localized phase, ξ−1 saturates to a nonzero value, leading

to a finite correlation length. The left upper panel of Fig. 3.2 shows ξ for different system

sizes and different disorder strengths. In the localized phase for a fixed system size L,

ξ was extrapolated from ξj by averaging over the values of j where it saturates, and in

the extended phase we take ξ = ξj=L. As expected, in the extended phase ξ increases

with system size, while in the localized phase it saturates to a constant. The left panel

of Fig. 3.3 shows how the correlation length ξ grows with system size in the extended

phase, ξ ∼ L
logL . The logarithmic correction is due to the normalization of the single

particle wave function in the extended phase, which decays as 1√
L

. Moreover, the single
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Figure 3.2: The upper left panel shows the localization length ξ for different system
sizes as a function of disorder strength W for the AAH model. The dashed line at
Wc = 2 represent the known transition point between extended and localized states
(Chapter 1). For values below Wc, ξ increases with system size while for values above
Wc it saturates. The right upper panel shows σ for different system sizes as a function
of disorder strength W ; for values of W below Wc, σ grows with system size while for
values above Wc it saturates. The lower panels show ξ−1

j in two different phases: for

W = 1.5 in the extended phase ξ−1
j goes to zero as a function of j, while for W = 2.2 in

the localized phase it saturates to a positive value implying a finite correlation length
ξ.

particle localization length is known to diverge close to the critical point as ξloc ∼ 1
log W

2

.

The right panel of Fig. 3.3 shows ξ ∼ ξloc close to the transition. It can be understood

by the non existence of a single particle mobility edge in the AAH model, implying

that the localization length of any particle diverges approaching Wc as 1
log W

2

, and thus

the correlation length ξ will be dominated by the divergence of ξloc. Furthermore we

checked that ξ does not change if calculated from the center of the chain. Figure 3.4

shows the ξ−1
j calculated from the mutual information of site L

2 with site j, in this

case ξ−1
j = − 1

|L/2−j−1| log
I([L

2
],[j+1])

I([L
2

],[L
2

+1])
. As expected in the extended phase (W = 1.5)

ξ−1
j tends to zero as j increases. In the localized phase W = 2.2, ξ−1

j saturates to a

finite values which is consisted with the values that we have just showed. The right

upper panel of Fig. 3.2 shows σ averaged over disorder realizations for different disorder

strengths and different system sizes. For values of W greater than Wc, σ converges to a

finite value, which implies that all the eigenstates are localized and have reached their

maximum extension. However, for values below Wc, σ scales linearly with system size

(σ ∼ L), with the consequence that pj ∼ L−1, indicating that correlations are spread
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Figure 3.3: The left panel shows the localization length in the extended phase for
the AAH-model for different system sizes, ξ ∼ L

logL . The right panel shows how ξ

approaches the transition point (Wc = 2) as a function of W in the localized phase.
In the localized phase ξ has been extrapolated choosing the system size L in which ξ

saturates.
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Figure 3.4: ξ−1
j for two values of W calculated from the quantum mutual information

of site L
2 with site j for the AAH-model.

uniformly at any distance. Figure 3.5 shows the full probability distribution (ρ) of σ

for the AAH-model in the two different phases. For W = 1.5 in the extended phase,

the probability shifts systematically with system size, indicating that all the states are

extended. In contrast, for W = 3.5 in the localized phase ρ does not shift, indicating

that the system is fully localized.

3.4 Quantum mutual information for many-body localiza-

tion

In the previous section, we have shown that the QMI captures the salient features of

the metal–insulator transition in the AAH model, we now study Ij for the interacting
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Figure 3.5: The probability distribution ρ of σ in the two different phase for different
system sizes L for the AAH-model. The first panel (W = 1.5) is in the extended phase
and ρ shifts to infinity with increasing L. The second panel (W = 3.5) is in the localized

phase and ρ does not scale with L.

problem that has an MBL transition. For this model, we compute Ij using exact diag-

onalization for eigenstates in the middle of the spectrum. The lower panels of Fig. 3.6

show ξ−1
j for two different values of W . In the expected extended phase (W = 1), it

goes to zero with increasing j and in the MBL phase (W = 5) it becomes constant for

large j, indicating that the QMI decays exponentially with j. As for the AAH-model,

for values of W where ξj becomes a constant with respect to j we average over those

sites, and for values of W where ξj decays uniformly with j we take ξ = ξj=L. The left

panel of Fig. 3.6 shows the extrapolation of the correlation length for different values

of W and for different L. We note that for values W < 4.0, ξ does not converge for

available system sizes, but it increases with L giving an indication of an extended phase

and thus of a transition. As expected, ξ is a monotonically decreasing function of W ,

implying stronger localization for larger disorder. We also detect the extended and lo-

calized phases by studying σ, as shown in the right upper panel of Fig. 3.6. Its behavior

is similar to the case of the AAH model. For values W ≤ 4, σ grows with L (σ ∼ L),

implying pj ∼ L−1, so there is equal probability of finding correlation at any distance.

Figure 3.7 shows the scaling of σ for different system sizes in the extended phase. σ

scales linearly with L indicating that pj ∼ L−1, all sites are correlated with each other

uniformly. Figure 3.8 shows the full probability distribution of σ in the two different

phases, in the extended phase (W = 1) it shifts with system size, while in the MBL

phase it is stable and has exponential tails. For W > 4.0, σ saturates with L indicating

the presence of the two different phases.
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Figure 3.6: The top left panel shows the localization length ξ for different system
sizes as a function of disorder strength W for the t-V model. The top right panel shows
σ for different system sizes as a function of disorder strength W , for values W < 4 it
grows with system size while for larger values it saturates. The vertical dashed line at
Wc = 3.5 is the value for the expected transition [95, 110]. The bottom lower panels
show ξ−1

j in the two different phases. For W = 1 in the extended phase, ξ−1
j goes

to zero as a function of j, for W > 4 in the localized phase it starts to saturate to a
positive value implying a finite correlation length.

12 14 16 18
L

2.5

4.0

5.5

σ

W= 1

W= 1.0

Figure 3.7: Scaling of σ for different system sizes in the extended phase (W = 1) for
the t-V model.

3.4.1 Unbounded spread of quantum mutual information

We now show how Ij can be used to distinguish between an Anderson insulator phase and

an MBL phase. We perform a global quench from a random product state
(∏N

s=1 c
†
is
|0〉
)
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Figure 3.8: The probability distribution ρ of σ in the two different phases of the
t-V model for different system sizes L. The first panel (W = 1.0) is in the extended
phase and ρ shifts to infinity with increasing L. The second panel (W = 5.0) is in the

localized phase and it does not scale with L.
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Figure 3.9: 〈〈X2〉〉 for different system sizes for W = 6, and for V = 0 (non-
interacting). For V = 0 〈〈X2〉〉 saturates at time of the order one and with system

size. For V 6= 0, 〈〈X2〉〉 ∼ log(t).

and compute Ij as a function of time. We study the following quantity,

〈〈X2〉〉 :=
∑
j

j2Ij(t)−

∑
j

jIj(t)

2

. (3.12)

This quantity allows us to detect the spread of information under time evolution. At

t = 0 the initial product state has no entanglement and 〈〈X2〉〉 is zero. With the increase

of time its value increases. Figure 3.9 shows 〈〈X2〉〉 as a function of time t averaged over

disorder and over random product states in the regime of strong localization W = 6. For
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V = 0 (Anderson model) it saturates at a time of the order one (∼ (hopping strength)−1)

as one would expect in an Anderson insulator phase. Using a free fermion technique

(Appendix A), we compute
〈
〈X2

〉
〉 for large system sizes for the noninteracting Anderson

model (V = 0), as shown in Fig. 3.10 to show that there is no propagation.
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L= 32
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L= 128

Figure 3.10:
〈
〈X2

〉
〉 as a function of time (t) for the Anderson model (V = 0) for

W = 6.

In the MBL phase (V 6= 0) in contrast, it grows logarithmically, 〈〈X2〉〉 ∼ log(t). The

logarithmic growth can be understood from the mechanism of dephasing induced by in-

teraction discussed in Chapter 2, in which the time needed to entangle separated portion

of the system grows exponentially with their distance. We tested this by calculating the

minimum time such that Ij(t) starts to be bigger than some fixed threshold,

Tmin(j) := min
{
t|Ij(t) ≥ 10−5

}
(3.13)

and we plot it as a function of j in Fig. 3.11. In the extended phase (Fig. 3.11, left panel)

Tmin grows algebraically with distance j, while in the MBL phase (Fig. 3.11, right panel)

the time to entangle two separated portions of the system grows exponentially with their

distance after an intermediate regime.

3.5 Summary

In this chapter we studied the QMI in fermionic systems having a localization-delocalization

transition. First, we benchmarked our main conjectures on the scaling of the QMI as a

function of the distance of two sites in the AAH-model. Second, we studied the QMI
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Figure 3.11: Tmin for different system size and in two different phases. For W = 1.5
extended phase, it grows algebraically. In the localized phase (W = 6) the time to
entangled two separated region of the systems grows exponentially with their distance.

in a interacting model having an MBL transition. The QMI decays exponentially with

the distance in the localized phase and slower than exponential in the extended phase.

This allowed us to define a correlation length ξ, which is finite in the localized phase

and diverging in the extended phase. This correlation length recovers the single particle

localization length ξloc if the system is composed of only a single fermion. Furthermore,

we defined the quantity σ, which can be seen as the variance of an appropriate proba-

bility distribution defined using the quantum mutual information. In both models, this

quantity saturates to a finite value in the localized phase and diverges with system size

in the extended phase. Finally we studied the non-equilibrium properties of the MBL

system by performing a global quench from a random product state and following the

time evolution of the mutual information. We showed that the spread of the QMI with

time can be used as a dynamical indicator to distinguish an Anderson insulator phase

from an MBL phase. In the Anderson phase it saturates with system size, while in the

interacting case it grows logarithmically. We propose the QMI between two sites as a

possible quantity which in principle can be measured in experiments, to detect the MBL

transition, and moreover to distinguish between an Anderson insulator phase and an

interacting localized phase.



Chapter 4

Characterizing time-irreversibility

in disordered fermionic systems

In Chapter 3, we have characterized the two phases of an MBL system studying its

local entanglement properties. In the following chapter, we will change perspective,

and we give a complementary characterization of the two known phases, analyzing and

quantifying time-irreversibility.

The existence of a “time-arrow” is one of the most intuitive phenomena in nature.

Indeed, the second law of thermodynamics imposes strong constraints on the time-

reversibility of non-adiabatic processes between thermodynamic states. Why time-

irreversible processes exist even though the microscopic classical laws of motion are

time-reversible, has been a question that has intrigued physicists for many decades [53].

The answer to this question is strongly connected to the existence of chaos in the classi-

cal phase-space [119], and thus the exponentially large sensitivity to small perturbations

of the initial condition. Nevertheless, how time-irrevesibility is revealed in quantum

systems is a much less understood phenomena. Already, the sensitivity to initial condi-

tions, giving rise to time-irreversibility in classical systems, cannot be used in quantum

systems due to the unitary time evolution [63]. Indeed, the scalar product of any two

evolving states is unchanged during the time evolution. To overcome this problem,

in 1994, A. Peres [61, 111] in the contest of quantum-chaos proposed to focus not on

the stability of the choice of the initial conditions but rather on the stability of the

quantum-dynamics when the Hamiltonian is weakly perturbed. The main idea is repre-

sented diagrammatically in Fig. 4.1 (a) [63]. An initial state |ψ0〉 will be evolved with

the Hamiltonian H1 and then at time t, it will be evolved back with a different a Hamil-

tonian H2 = H1 + {weak perturbation}. Finally, taking the absolute module square to

calculate the quantum return probability, we quantify how time-reversible the system
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Figure 4.1: Diagrammatic explanation of the Loschmidt echo [63].

is. The described quantity is called the Loschmidt echo, and we will define it precisely

later.

If the system is ergodic, the Loschmidt echo will have a fast decay with time (expo-

nentially fast), since the system is governed by the laws of statistical mechanics. How

time-irreversibility is affected by the breaking of ergodicity (i.e., in MBL systems) is

the main topic of this chapter. The chapter is organized as follows. Starting with the

definitions of the models, we will then introduce the main methods to quantify time-

irreversibility. First, we will apply these methods to non-interacting disordered fermionic

models. Second, we will quantify time-irreversibility in an MBL system, focusing on the

characterization of the ergodic and MBL phases.

4.1 Models and methods

We study the following Hamiltonian

Ĥ =− t

2

L
2
−2∑

x=−L
2

ĉ†xĉx+1 + h.c.+

L
2
−1∑

x=−L
2

hx

(
n̂x −

1

2

)

+ V

L
2
−2∑

x=−L
2

(
n̂x −

1

2

)(
n̂x+1 −

1

2

)
,

(4.1)

where {ĉ†x} ({ĉx}) are the fermionic creation (annihilation) operators, L the system size

and N=L
2 the number of fermions.

In this chapter we consider three different cases, which have been described in detail in

the introductory chapters (Chapters 1, 2):
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1. The non-interacting Aubry-André-Harper (AAH) model, obtained from Ĥ with

V=0, t=2 and hx=W cos(2πxα+φ) where α=1+
√

5
2 ; φ is a random phase uniformly

distributed in [0, 2π]. The AAH model has a localization-delocalization transition

at Wc=2 (extended phase for W ≤ Wc and localized phase for W > Wc). The

localization length close to the transition diverges as ξloc ∼ log−1 W
2 (Chapter 2).

2. The non-interacting Anderson model, given by V=0, t=1 and {hx} independent

random variables uniformly distributed in [−W,W ]. In the Anderson model, all

the single-particle eigenstates are exponentially localized and ξloc ∼ W−2 in the

weak disorder regime (Eq. 1.38).

3. The spinless disordered t-V chain which has been studied also in Chapters 2,3,

obtained from the Anderson model by turning on the interaction with V=1. This

t-V chain is believed to have a MBL transition at a critical disorder strength

Wc ≈ 3.5 (extended/ergodic for W < Wc and localized for W > Wc) at infinite

temperature.

In what follows we describe the quantities that we consider to characterize

time-irreversibility perturbing the system. We focus on the study of spatially local

perturbation of the Hamiltonian Ĥ, we define

Ĥε = Ĥ+ 2εn̂0, (4.2)

with ε > 0. We would like to point out, that this perturbation is a zero density pertur-

bation in the thermodynamic limit, meaning∣∣∣∣∣‖|Ĥ‖| − ‖|Ĥε‖|L

∣∣∣∣∣ ∼ O(ε/L). (4.3)

A central object studied in this chapter is the Loschmidt echo (LE) [39, 46, 47, 72, 91,

115], which in related forms has already been studied in disordered systems [2, 22, 43,

125, 133]

L(t) = |〈ψ|eitĤe−itĤε |ψ〉|2. (4.4)

The LE is a highly sensitive measure, since it involves a scalar product between two

many-body wavefunctions. For example, the scalar product of two many-body wave-

functions can be zero even if they describe locally the same physical state. For this

reason, to understand how states deviate in their local properties if evolved with Ĥ and

Ĥε, we study the difference of the local density profile (DLDP) [43, 76], defining

D(t) =
∑
x

|δρ(x, t)|, (4.5)
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with

δρ(x, t) = 〈ψ|eitĤn̂xe−itĤ|ψ〉 − 〈ψ|eitĤε n̂xe−itĤε |ψ〉, (4.6)

Moreover, we are interested in the long-time behavior of D(t), which quantifies the

long-time relative temporal fluctuations

D∞ = lim
T→∞

1

T

∫ T

0
dsD(s). (4.7)

For the initial state |ψ〉, we choose a product state in the occupation basis
(∏N

s=1 c
†
2s|0〉

)
(charge-density state), which is easy to realize in experiments [129]. The strength of

the perturbation ε is set equal to 0.1, so ε < {t,W, V }. The average over disorder is

indicated with an overline, i.e., D(t).

4.2 Non-interacting models

We start by quantifying time-irreversibility for the two non-interacting models.

4.2.1 Loschmidt Echo for non-interacting models

We compute the LE for these models using a free fermion technique (Wick’s theo-

rem [113]), which permits us to inspect large system sizes for long times. Figure 4.2

(a-c) shows the LE in the two phases of the AAH and in the Anderson model. In the ex-

tended phase of the AAH model (W = 1.5), the LE decays exponentially as L(t) ∼ e−Γt,

revealing the strong effect of local small perturbations. In the localized phase for both

models (AAH and Anderson models), the LE decays algebraically in time as L(t) ∼ t−β.

Note that in both phases, the long time saturation value is exponentially small in sys-

tem size, i.e., L(t → ∞) ∼ e−ηL (Anderson orthogonality theorem [10]). Still the

two phases can be distinguished through the decay of the LE as a function of time.

For the localized phase, Fig. 4.2 (b-c) also shows the relation between the exponent β

and the microscopic parameter of the Hamiltonian (W ), with a good collapse of the

curves. For the Anderson model, we observe β ∝W−2, indicating that β is proportional

to ξloc at least in the weak disorder limit. For the AAH model, we find the scaling

β ∝ (W log W
2 )−1. Thus, β is again proportional to the localization length ξloc on ap-

proaching the localization-delocalization transition to leading order. The rescaled time

in the LE deserves particular attention: the time scale for the onset of the algebraic

decay is proportional to the localization length, which on approaching the localization-

delocalization transition shifts to infinity in the thermodynamic limit.
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Figure 4.2: (a),(b): Behavior of −logL(t) for the AAH model in the extended phase
(W = 1.5) (L(t) ∼ e−Γt) and in the localized phase for several values of W (L(t) ∼ t−β).
In the localized phase t and L(t) have been properly rescaled to underline the time scale
on which the decays starts and the behavior of the exponent of the algebraic decay β.
(c): −logL(t) for the Anderson model for several values of W ; here also a rescaling
has been done on t and L(t). (d),(e): Panels show the approximate formula LA(t) for
the two non-interacting models and for the same values of W . The averages have been

performed over 5000 random configurations of disorder.

We now present an analytical argument supporting the algebraic decay of the LE in the

localized phase. In the Lehmann representation [113] the LE reads

L(t) =

∣∣∣∣∣∑
n,m

〈ψ|n〉〈n|mε〉〈mε|ψ〉e−it(En−E
(ε)
m )

∣∣∣∣∣
2

, (4.8)

where En (|n〉) and E
(ε)
m (|mε〉) are the eigenvalues (eigenvectors) of Ĥ and Ĥε, respec-

tively. The simple picture is that in the localized phase, the local perturbation causes

an exponentially weak dephasing of the energies of the unperturbed Hamiltonian with
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respect to the perturbed one, inducing the decay of the LE. The following approxima-

tions, which are equivalent to a first order expansion in ε [29], permit us to estimate

the behavior of the LE and relate the power-law exponent β to the localization length.

We confirmed this relation close to the localization-delocalization transition with exact

numerics.

The main assumptions which we use are the following:

1. The perturbation modifies only the eigenenergies of Ĥε but not its eigenfunctions,

which are the same as those of the unperturbed Hamiltonian Ĥ. It is easy to see

that the contribution to the change of the eigenfunctions is second order in the

strength of the perturbation ε.

2. The behavior of the LE is independent of the initial choice of the product state.

Using the spectral representation for the time evolution and with the use of the first

approximation 〈n|mε〉 = δn,m,

L(t) ≈

∣∣∣∣∣∑
n

|〈n|ψ〉|2e−it(En−E
(ε)
n )

∣∣∣∣∣
2

, (4.9)

and using the second approximation,

L(t) ≈

∣∣∣∣∣ 1

2L

∑
n

e−it(En−E
(ε)
n )

∣∣∣∣∣
2

, (4.10)

Using first-order perturbation theory in ε to estimate the energy difference

En − E(ε)
n = 2ε〈n|n̂0|n〉, (4.11)

we get

L(t) ≈

∣∣∣∣∣
∑

n e
−i2tε〈n|n̂0|n〉

2L

∣∣∣∣∣
2

. (4.12)

Moreover 〈n|n̂0|n〉 =
∑L

j=1 a
(n)
j |φj(0)|2, where {φj(0)} are the single particle wavefunc-

tions evaluated in the center of the the chain and a
(n)
j takes only two values {1, 0} depend-

ing on whether the single-particle eigenstate labeled with j is occupied or not in the state

|n〉. The last expression is essentially a perturbation expansion in ε, L(t) = LA(t)+O(ε2).

Finally, defining LA(t) by

LA(t) =

∣∣∣∣∣
∑

n e
−i2tε〈n|n̂0|n〉

2L

∣∣∣∣∣
2

=
L∏
j=1

cos2
(
ε|φj(0)|2t

)
, (4.13)
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phase (W = 2.5). The time has been rescaled by ε as is suggested by the equation in

main text |φj(0)|2tε ≈ 1.

where the subscript A underlines that this is an approximate formula. Since all sin-

gle particle eigenstates are exponentially localized, after an appropriate relabeling of

the index j, we assume that |φj(0)|2 ∼ e
− j
ξ

ξ . Thus, the only factors that contribute

significantly are the ones where ε|φj(0)|2t ≈ 1

LA(t) ≈
ξ log εt

ξ∏
j=1

cos2
(
ε|φj(0)|2t

)
∼
(
εt

ξ

)−cξ
, (4.14)

with c > 0.

We can confirm our analytical predictions by numerically studying Eq. 4.13. The last

row of Fig. 4.2 (d,e) shows the algebraic decay with time of the LE from Eq. 4.13 as

LA(t) ∼ t−βA for the two models and several values of W . Surprisingly, despite being

a perturbative expansion in ε, LA(t) reproduces the algebraic decay of the LE also for

long times. The exponents βA and β have the same dependence on the microscopic

parameter W in the vicinity of the critical point, namely β, βA ∼ W−2 as W → 0 for

the Anderson model and β, βA ∼ log−1 W
2 as W → 2 for the AAH model. Indeed, as

shown in Fig. 4.2 (d-e), βA is proportional to the localization length (βA ∝ ξloc). For

the Anderson model, the deviation with increasing disorder strength W is just a sign

that the perturbative expansion for ξloc is breaking down (Chapter 1).

Moreover, the approximate formula Eq. 4.14 describes well the rescaling of time, given

by t→ εt
ξ . Figure 4.3 shows L(t) for several values of the perturbation strength ε for the

AAH model in the localized phase (W = 2.5). L(t) decays algebraically, the exponent

of the decay β does not depend on ε, and as suggested by the expression |φj(0)|2tε, the

time has been properly rescaled to make the curves collapse together. We can check
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that our results are qualitatively independent of the choice of the initial product state,

averaging the LE over random product states of the form
∏N
s=1 c

†
is
|0〉 (for any random

configuration we calculate L(t) for 25 random product states), as shown in Fig. 4.4 (the

average over random product states is indicated with 〈·〉). Figure 4.4 shows that the

behavior of L(t) is similar to the charge-density state, and the same scaling with the

microscopic parameter W still works relatively well, and the deviations become relevant

for long times (t > 104). It is also interesting to compare different way of performing

the average. Figure 4.5 shows for the non-interacting Anderson model and for different

disorder strengths −logL(t) and − logL(t). As expected from the inequality between the

arithmetic mean and the geometric mean, −logL(t) ≥ − logL(t). Moreover −logL(t),
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being the logarithm of the typical value of L(t), is less noisy than the logarithm of the

arithmetic mean − logL(t). Nevertheless, to some extent the scaling of the algebraic

decay β and of the time are the same for both ways of performing the disorder average.

4.2.2 Difference of the local density profile in non-interacting models

In this section, we probe the effect of local perturbation on the dynamics of local observ-

ables by studying D(t) (DLDP). Figure 4.6 shows D(t) for two different values of W for

the AAH model. In the extended phase with W = 1.5, D(t) shows an algebraic growth

with time, D(t) ∼ tα, α ≈ 0.6 for W = 1.5. The saturation point in time of D(t) is

consistent with the scale
√
L (inset, Fig. 4.6 (a)) with system size, indicating that in the

long time limit the average over index sites of the DLDP (D∞L ) relaxes algebraically with

system size. In the localized phase, D(t) has a log-like slow growth, D(t) ∼ logα t with

α ≈ 1.3 for W = 2.5, so the effect of local perturbations on the dynamics is exponen-

tially slow in time. Moreover, D∞ ∼ L (inset, Fig. 4.6 (b)), so that the relaxation of D∞L

never takes place. An analytical argument based on a random matrix approximation is

possible to give, which will give a lower bound of D∞ as a function of L. Neglecting the

time fluctuation of D(t) we get a lower bound of D∞ (diagonal ensemble)

1

T

∫ T

0
D(s)ds ≥ 1

T

∑
x

∣∣∣∣∫ T

0
δρ(x, s)ds

∣∣∣∣ . (4.15)

Thus,

lim
T→∞

1

T

∣∣∣∣∫ T

0
δρ(x, s)ds

∣∣∣∣ =
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Figure 4.7: The panels show −logL(t) for different values of disorder strength W for
the t-V model. (a): The system is in the ergodic phase W = 1 and the LE decays
at least exponentially fast with time. (b): An intermediate disorder strength W = 2,
−logL(t)

t (inset) forms a plateau with time which is enlarging with system size, showing
that the range of times for which LE decays exponentially fast is expanding. (c): The
system is in the localized phase W = 6 and the LE decays algebraically with time. We
also show the LE for the non-interacting case (V = 0) for the largest system size in
each panel (L = 24 for W = 1, 2 and L = 20 for W = 6). The averages have been
performed over 104 random configuration for system size L ≤ 14 and 5000 for L = 16

and 2500 for larger system sizes.

=

∣∣∣∣∣∑
α

′∑
s

|φα(x)|2|φα(s)|2 −
∑
α

′∑
s

|φεα(x)|2|φεα(s)|2
∣∣∣∣∣

∼

∣∣∣∣∣∑
α

′∑
s

|φ̃α(x)|2|φ̃α(s)|2

L2
−
∑
α

′∑
s

|φ̃εα(x)|2|φ̃εα(s)|2

L2

∣∣∣∣∣ .
(4.16)

The sum over the index s runs over the index sites that are occupied at the initial

time (t=0). {φα(x)}L1 and {φεα(x)}L1 are the single-particle wavefunctions of Ĥ and Ĥε
respectively. In first approximation in the extended phase, the single-particle wavefunc-

tions can be approximated with { φ̃α(x)√
L
}L1 and { φ̃

ε
α(x)√
L
}L1 , where {φ̃α(x)}L1 and {φ̃εα(x)}L1

are independent random variables with a fixed mean and variance which do not scale

with L, since their dependence on L has been already taken care with the normaliza-

tion factor 1√
L

. Using the central limit theorem, we can estimate the scaling with

L of the sum over the index s and α, e.g.,
∑′

s
|φ̃α(s)|2

L ∼ constant1 + O( 1√
L

) and∑
α
|φ̃α(x)|2

L ∼ constant2 + O( 1√
L

). Since we have assumed that the perturbation does

not change the statistical properties of the single-particle wavefunctions, we have that

the difference of the local density profile |ρ(x, t → ∞)| ≥ O( 1√
L

). This gives the result

D∞ ≥ O(
√
L). The argument can be repeated for the non-interacting localized phase.

Indeed in the localized phase, taking the single-particle wavefunctions as box functions

with a finite width randomly displaced, (e.g., φα(x) ∼ χ[α−ξ,α+ξ]√
2ξ

), it is easy to show that

the lower bound D∞ ≥ O(L). Since D∞ can not be larger than L, we have D∞ ∼ O(L).
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4.3 Spinless t-V chain

4.3.1 Loschmidt echo for the t-V chain

In the previous section we have shown that the LE captures the salient features of the

localization-delocalization transition in the AAH model, we now study L(t) for the in-

teracting spinless t-V chain that has an MBL transition. We perform the time evolution

using full diagonalization for small systems size L ≤ 16, and using the Chebyshev in-

tegration technique (Appendix A) for larger L (18 ≤ L ≤ 24). Figure 4.7 (a-c) shows

the behavior of the LE for the interacting model for different values of disorder strength

W . The enhanced decay compared with the non-interacting problem is also shown in

Fig. 4.7. Nevertheless, in the localized phase, the LE still decays algebraically as in the

localized phase of the non-interacting models. For W = 6 the function − logL(t)
t (inset

Fig. 4.7 (c)) does not present any systematic dependence on system size, indicating that

the algebraic decay could be the asymptotic thermodynamic behavior. Moreover, the

time can be rescaled with the strength of the perturbation ε like for the non-interacting

case (t→ tε), as is shown in Fig. 4.8. In the ergodic phase with W = 1, the LE decays

at least exponentially with time, and the function − logL(t)
t does not decay for times

in which the decay of the LE is not affected by finite-size effects (inset Fig. 4.7 (a)).

Figure 4.7 (b) also shows an intermediate disorder value W = 2, at which the function

− logL(t)
t develops a plateau with respect to t, like in the extended phase, after which a

slower decay sets in. This plateau is enlarging with increasing system size, which may

indicate that in the thermodynamic limit ergodicity will be completely restored and the

LE will decay exponentially with t. Figure 4.9 shows the behavior of the LE averaged

over random product states (
∏N
s=1 c

†
is
|0〉) and disorder configurations for the interacting

t-V chain for two different values of W , in the ergodic (W = 1) phase L(t) ∼ e−Γt and in
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Figure 4.9: The panels show − logL(t) averaged over random product states and
disorder configurations for the interacting spinless t-V chain for two different W (W = 1

in the ergodic phase, W = 6 in the localized phase). For V = 0, L = 20.

the localized (W = 6) phase L(t) ∼ t−β. We would like to stress that what we have done

is only valid at infinite temperature (middle of the energy spectrum). Indeed the result

will be completely different if we will repeat what we have done quenching for example

the ground state (zero temperature T = 0) of Ĥ. Figure 4.10 shows L(t) (elogL(t) ) in

the localized phase W = 6 where the initial state has been taken the ground state of

Ĥ, in this case the LE does not decay in time. It is interesting to note that the same

behavior of LE occurs also in the ergodic phase, since the ground state of Ĥ is localized

for any amount of disorder [62], as shown in Fig 4.11.
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Figure 4.10: The panels show L(t) (elogL(t)) in the localized phase (W = 6) for the
t-V chain where the initial state has been taken the ground state of Ĥ.
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Figure 4.11: The panels show L(t) (elogL(t)) in the ergodic phase (W = 1) for the
t-V chain where the initial state has been taken the ground state of Ĥ.

4.3.2 Difference of the local density profile in the Spinless t-V chain

We now study the effects of perturbations in the dynamics of local observables by study-

ing the DLDP for the t-V chain. Figure 4.12 shows D(t) in the interacting model for

two values of W . We give evidence that the behavior of D(t) in the ergodic phase for

long time is drastically different from the non-interacting case: D(t) is not a monotonic

function of t (inset, Fig. 4.12 (a)). For short times, D(t) grows to a maximum value from

which it starts to decay to a finite L-dependent value. The non-monotonic behavior is

intimately connected with the thermalization of the system. Indeed, the long time ex-

pectation values of local observables for thermal systems at infinite temperature should

be unchanged if the system is locally perturbed. The average time in which the decay

of D(t) starts, defines a time scale τ ; this is roughly the time at which D(t) changes

concavity and starts to decrease. For times much larger than τ , the expectation value

of a local observable is given by the expectation value over a many-body random state

(ETH at infinite temperature), so that |δρ(x, t � τ)| ∼
(
L
N

)−γ ∼ e−(γ log 2)L. In the

localized phase, the finite-size effects become more important, and for smaller system

sizes it could seem that D(t) has an unbounded slow growth similar to the localized

phases for the non-interacting models. However, a careful analysis shows that the sat-

uration value is merely an exponential decay such as in the extended phase, consisted

with D∞ ∼ L
(
L
N

)−γ
(inset, Fig. 4.12 (b)). Compared with the ergodic phase, in the

localized phase the exponent γ is small, so that for the considered system sizes, the

behavior of D∞ is dominated by the linear prefactor L. In the thermodynamic limit we

expect that the final shape will be similar to the one in the ergodic phase, so that D(t)
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Figure 4.12: D(t) for the spinless disordered t-V chain for different L and two values
of W . (a) W = 1, the inset shows D(t) for L = 24 to underline its non-monotonic
dependence on t. (b) W = 6, the inset shows D∞

L as function of L, it decays exponen-

tially fast with L, D∞
L ∼

(
L
N

)−γ
. The averages have been performed over 104 random

configuration for system size L ≤ 14 and 5000 for L = 16 and 2500 for larger system
sizes.

will eventually also decay with time at long times. Note that the time scale at which this

decay will take place is extremely large; the limitation on system size does not allow us

to estimate an upper bound of the time scale τ , which leaves open the possibility that

τ might shift to infinity with increasing L. The behavior of D∞ in the localized phase

is reminiscent of the long time “volume-law” saturation of the entanglement entropy

S(t) after a quantum quench. The distinction between the ergodic and the MBL phase

lies only in the numerical value of the prefactor in front of the saturation value of S(t)

(Chapter 2), while the scaling with L is the same in both phases (volume law).

We repeated our analysis for other values of W . Figure 4.13 shows the behavior of D(t)

for different system sizes in the two phases of the t-V chain. For W = 2, the system is

in the ergodic phase, and D(t) exhibits the same non-monotonic behaviour as a function

of t as for the case W = 1. For D(t) in the localized phase (W = 5), finite-size effects

are important. Indeed, it is not possible to see the non-monotonic phase even in the

ergodic phase for system sizes smaller than L ≤ 16. However, Fig. 4.13 gives evidence

that in both phases, D∞ ∼ L
(
L
N

)−γ
. In the ergodic phase for W = 2, γ ≈ 0.26. In

the localized phase for W = 5, the exponent γ ≈ 0.1. The exponent is small so that

for system size L ≤ 16 the behavior of the function L
(
L
N

)−γ
is dominated by the linear

part L. Nevertheless, if this scaling persists in the thermodynamic limit, D(t) in the

long-time limit will go to zero.
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Figure 4.13: The top panel shows D(t)
L for W = 2 (ergodic) and W = 5 (localized)

for the interacting t-V chain for several system sizes L. The bottom panels show that

in both phases D∞
L ∼

(
L
N

)−γ
.

4.3.3 An effective model for many-body localized systems

In this section we introduce a general method which reproduces quantitatively and

qualitatively the exact results of a many-body localized system in the limit of strong

disorder. This method allows us to study system sizes and time scale that so far have

not been observed in numerical simulations.

First, studying the growth of the entanglement entropy following a global quantum

quench (Chapter 2), we show that this method is reliable in the limit of weak interactions

(W/V � 1). Second, we confirm our speculation from the previous section: indeed,

finite-scaling analysis suggests that in the MBL phase D∞ ∼ e−αL. Nevertheless, due to

limitation of available system sizes, we were not able to see the time scale in which D(t)

starts to decay. Thus, in this section using our method we are able to give evidences of

the existence of a time scale for which the decay of D(t) occurs.

Using first order perturbation theory on the interaction strength V (first order in the

eigenenegies of Ĥ), it is possible to obtain the following effective Hamiltonian

Ĥeff =
∑
l

εlη̂
†
l η̂l + V

∑
l,m

Bl,mη̂†l η̂lη̂
†
mη̂m, (4.17)
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where η̂†l =
∑

i φl(i)ĉ
†
i with {φl} and {εl} respectively the single-particle wavefunctions

and the single-particle eigenenergies. The dephasing coefficients Bl,m are given by:

Bl,m =
∑
〈i,j〉

[φl(i)φm(i)φl(j)φm(j)− |φl(i)|2|φm(j)|2], (4.18)

since the single-particle wavefunctions are localized in space, after a suitable relabeling

of the indexes (l,m), we have

Bl,m ∼ e−|l−m|/ξloc . (4.19)

The model Ĥeff is in this representation a classical Ising model, and it is integrable

(Chapter 2). Its eigenstates are the Slater-determinant states of the non-interacting

model (V = 0).

The Heisenberg equation for the creation operators {η̂†l } reads

dη̂†l
dt

= i[Ĥeff, η̂†l ]

= iεl + iV
∑
m

(Bm,l + Bl,m)η̂†mη̂m,
(4.20)

defining B̃l,m = Bm,l + Bl,m the solution of Eq. 4.20 is given by

η̂†l (t) = e+itεl+itV
∑
m B̃l,mη

†
mηmη†l . (4.21)

Knowing the time evolution of the operators {η†l }, we can calculate easily the time

expectation value of local observables (e.g., n̂x).

As described in Chapter 2, the role of the term
∑

l,m Bl,mη̂
†
l η̂lη̂

†
mη̂m is to exponentially

weakly correlate the eigenenergies of the non-interacting case, and reproducing the de-

phasing mechanism in an interacting localized phase. Figure 4.14 shows the average

entanglement entropy S(t) calculated evolving a charge-density state
(∏N

s=1 c
†
2s|0〉

)
first

with the Hamiltonian Ĥ (solid-lines) and then with the effective model Ĥeff. The effec-

tive model reproduces qualitatively the unbounded growth of the entanglement entropy

observed in interacting localized systems. Moreover, the relative error between S(t) cal-

culated with Ĥ and with Ĥeff is a bounded function of time, implying that our method

reproduces the exact results also qualitatively. It is interesting to note that despite being

a perturbative expansion in V , our method reproduces the entanglement growth also

for longer times than the range of validity of perturbation theory. A similar observation

has been done also for LA(t). It seems that perturbation theory is extremely stable in

a localized phase.
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Figure 4.14: The panel shows the bipartite entanglement entropy S(t) after a global
quantum quench for several systems sizes. The S(t) has been calculated using the exact
Hamiltonian Ĥ (solid-lines, exact) and the effective model Ĥeff (dashed-lines, approx.).

Having shown that our model is suitable to study many-body localized systems, we

now focus on |ρ(x, t)| using Ĥeff. In the previous section we predicted the existence of

a time scale τ in which D(t) =
∑

x |ρ(x, t)| changes concavity and starts to decrease.

Figure 4.15 shows |ρ(x, t)| calculated using the effective model for a fixed system size

L = 96, and fixed disorder and interaction strengths. Figure (a) 4.15 shows a clear

change in the concavity of |ρ(x, t)| with time. This result confirms the existence of a

time scale τx, in which |ρ(x, t)| starts to decrease. Moreover, the time has been rescaled

to show that log τx ∼ x (x is the distance from the perturbation). Figure (b) 4.15 shows

that log τx ∼ ξ−1
loc , here ξ−1

loc is single-particle localization length which has been calculated

using the transfer matrix technique (Chapter 1). Finally, we find the complete scaling

form τx ∼ ex/ξloc . Indeed, τx must be proportional to the time scale in which the site x

starts to be entangled with the site x = 0 (site in which the system is perturbed) and

so losing information about the existence of the perturbation,

τxB̃0,x ≈ 1⇒ τxe
−x/ξloc ≈ 1. (4.22)

Furthermore, also the two-point correlation function

Cx(t) = |〈n̂xn̂0〉 − 〈n̂x〉〈n̂0〉|(t), (4.23)

shows a similar behavior like as |ρ(x, t)|. Figure 4.16 shows Cx(t) calculated with Ĥeff .

Figure (a) 4.16 shows in a color plot the logarithmic light cone giving indications that

correlations grow logarithmically with time as expected if S(t) ∼ log(t). Nevertheless,
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there exists a time in which also Cx(t) starts to decrease, as shown in Fig. (b) 4.16.

Moreover, Fig. (b) 4.16 shows the non-interacting case (V = 0), in which Cx(t) does

not decay. Thus, the two point correlation function could be a local measurement to

distinguish an Anderson insulator from an interacting localized phase.
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Recapitulating, our method gives strong evidence that the decay of the DLDP is only

due to the dephasing mechanism, as we conjectured in the previous section.

4.4 Summary

In this chapter, we probed the effects of local perturbations on the dynamics of several

disordered systems by studying the Loschmidt echo (LE) and the difference of the local

density profile (DLDP). First, with a combination of analytical arguments and exact nu-

merical simulations, we showed that the LE in the localized phase decays algebraically in

time. Furthermore, we found, for the non-interacting models, that the exponent of the

algebraic decay is proportional to the single-particle localization length, which diverges

at the localization-delocalization transition. In the extended phase, the LE decays expo-

nentially fast with time. The faster exponential decay in the extended phase compared

with the algebraic decay in the localized phase implies that time-irreversibility is more

strongly manifested in the extended phase than in the localized phase, at least for local

perturbations. Second, we studied the DLDP for the same models, and we found that

the long-time behavior saturates algebraically with system size in the extended phase of

the Aubry-André-Harper model, while it never relaxes for the non-interacting localized

phase. For the DLDP in the spinless disordered t-V chain, the relaxation is exponential

in system size in both phases: in the ergodic phase this is due to thermalization, while in

the MBL phase it could be due to the interaction-induced dephasing mechanism which

also explains the long-time saturation values of the entanglement entropy after a quan-

tum quench. We give evidence of our conjecture, testing it in an effective model. The

study of the change in the expectation values of local observables when the system is

perturbed, gives a different perspective concerning time-irreversibility as opposed to the

LE. Indeed, the long-time expectation value of local observables in a thermal system at

infinite temperature should be unchanged if the system is locally perturbed. We gave

numerical evidence that this also happens in the MBL phase.



Part III

Study of Multifractal phases in
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In the next two chapters studying the quantum dynamics of an MBL system and of the

Anderson model on a random regular graph, we will inspect the existence of an

intermediate phase composed by multifractal states. These two models are intimately

connected, due to the map between localization in Fock space and Anderson localization

problems on hierarchical tree-structures. We question the existence of the intermediate

phase for the MBL problem. We give indication of the possible existence of a

multifractal phase for the Anderson problem on a random regular graph.



Chapter 5

Subdiffusion, mobility edges, and

finite-size effects in many-body

localized systems

In Chapter 2, we have discussed that the MBL transition for some values of the disorder

strength can also occur as a function of energy density. In other words, for values

W ≤ Wc(ε = 0.5), the energy density spectrum of the system is divided in two parts:

a part hosting delocalized (ergodic) eigenstates while the other one contains localized

eigenstates. Moreover, as we discussed in Chapter 2, W. De Roeck et al. in a work

entitled “Absence of many-body mobility edges” [42] claimed that the MBL transition

can not happen as a function of energy density. In their work, using an argument based

on perturbation theory, they indicate that local-fluctuations in an eigenstate will create

hot-bubbles which will destabilize the localized phase. Furthermore, they also point out

several mechanisms which could make the theory fail. This theory is in contrast with

most of the exact numerical simulations (Chapter 2). Nevertheless, since numerical

simulations can only be performed on relatively small system sizes, the validity of this

theory in the thermodynamic limit is still not settled .

Moreover, numerical simulations in one-dimensional chains show that the transport close

to the MBL phase within the ergodic phase could be subdiffusive [15, 60, 94, 96, 150],

contradicting the expected diffusive transport behavior in a metallic phase. A phe-

nomenological theory has been proposed to explain this unexpected anomalous propa-

gation [60]. It has been claimed that the reason could be due to rare highly disordered

regions (Griffiths regions) where the transport would be extremely slow. Nevertheless,

this theory seems incomplete, since this subdiffusive dynamics has been observed also

in an MBL model in which Griffiths regions are not possible (i.e. Aubry-André-Harper



86

model with short range interactions) [88]. This slow dynamic has also been observed for

two dimensional systems [89], in which even the existence of Griffiths regions would not

change the transport properties [151]. Additionally, two works [73, 139] show that the

transport could indeed be diffusive.

In this chapter, with the aim to shed light on these two issues, we study the dynamics

of an MBL system, restricting the dynamics only to selected windows of energy density.

This chapter is organized as follows: In the first part we describe the model and the

quantities considered to study the observed slow dynamics on the model. We focus on

finite-size effects and we point out their importance.

5.1 Model and methods

We consider again the t-V model (Chapter 2)

Ĥ =− t

2

L/2−2∑
x=−L/2

ĉ†xĉx+1 + h.c.+

L/2−1∑
x=−L/2

µx

(
n̂x −

1

2

)

+ V

L/2−2∑
x=−L/2

(
n̂x −

1

2

)(
n̂x+1 −

1

2

)
, (5.1)

where L is the system size, x=1, . . . , L, with hopping (t = 1) and interaction (V ) between

nearest neighbors. The uncorrelated on-site energies {µx} are being drawn from a box

distribution [−W,W ]. We work at half filling and with open boundary conditions. For

V = 1.0, the MBL transition is believed to be at Wc ≈ 3.5 (Chapter 2). We investigate

the charge propagation focusing on the delocalized region near the MBL transition. A

common description of relaxation dynamics employs the density propagator (C(r, t) in

Chapter 2), Π(x, t), that takes a simple Gaussian shape for diffusive systems:

Π(x, t)=e−
1
2

(x/∆x(t))2/
√

2π∆x(t), ∆x(t)=
√
Dt, (5.2)

where D is the diffusion constant. As we discussed, aiming at the many-mobility edges

(MBME)s, we actually study a variant of it, Πε(x, t), that resolves the contribution to

Π(x, t) stemming from many-body states with energy densities ε. The specific correlator

Πε(x, t) is defined via its discrete Fourier space representation:

Πε(q, t) = Φε(q, t)/Φε(q, t=0+), (5.3)
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where the disorder average is denoted by the overline. Φε(q, t) is the Fourier transform

of the energy-projected density relaxation functions

Φε(x, t) = [〈n̂x(t)n̂0〉ε − 〈n̂x〉ε〈n̂0〉ε] Θ(t). (5.4)

The discrete Fourier transform of {xn} is defined by: yq =
∑L−1

n=0 xne
−iqn, q=2πaj

L and

lattice spacing a=1.

The projection onto a narrow spectral range near ε is facilitated by taking the expecta-

tion value of an operator 〈Ô〉ε = Tr[Ôρ̂(ε)] with

ρ̂(ε) = N−1

∫ ε+∆ε/2

ε−∆ε/2
dε′

N∑
γ

|γ〉δ(εγ − ε′)〈γ|, (5.5)

where |γ〉 denotes the eigenstates of the Hamiltonian (5.1) with energy density

εγ=(Eγ−Emin)/(Emax−Emin), (5.6)

where Eγ are the many-body energies and Emax, min denote the extreme values of the

energy spectrum. N represents the number of states in the energy density window

∆ε, and it is exponentially large in L. By definition, Πε(q=0, t)=1 and for a conven-

tional diffusive system we have a Gaussian shape, Πε(q, t)= exp(−(∆xε(t)q)
2)Θ(t), with

∆xε(t) =
√
Dεt. For the time evolution, Eq. (5.4), we employ a standard Chebyshev-

polynomial propagation (Appendix A); traces over operators are performed stochasti-

cally as averages over random state vectors. The approach owes its efficiency to the fact

that disorder averages converge very rapidly with the number of random states.

5.2 Mean square displacement

We begin the analysis of the propagator Πε(x, t) with its second moment in real space,

∆xε(t)
2=〈x2〉ε − 〈x〉2ε, 〈xn〉ε =

L/2−1∑
x=−L/2

xn Πε(x, t).

Figure 5.1 (a1-a3) shows the ∆xε(t) at W = 2.5 for both interacting (V = 1, dashed

line) and non-interacting (V = 0, solid line) case for several values of energy densities

(ε = 0.1, 0.5, 0.875). For these parameters the many-body mobility edges (MBMEs)

have been reported near ε ≈ 0.2 and near 0.8 with a delocalized regime in between [95],

as is also explained in Chapter 2. Figure 5.1 (a1-a3) carries several messages:
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(a1)

(a2)

(a3)

(b1)

(b2)

(b3)

(c1)

(c2)

(c3)

Figure 5.1: (a1)-(a3) The time evolution of ∆xε(t) at W=2.5 and V= 1 near the
lower band-edge (upper row, ε = 0.1) in the center region (center row, 0.5) and near
the upper band-edge (lower row, 0.875) for system sizes L = 16, 20, 24 (dashed traces
blue, red, green). Also shown are non-interacting reference traces for L=16, 20 (V=0,

solid lines). (b1)-(b3) Re-plotting (a1)-(a3) as d ln ∆xε(t)/d ln t over ∆xε(t)/∆x
(0)
ε

to highlight finite-size effects. Inset shows the blow up of the (b3) data for better
visibility of trends including system sizes L = 16, 18, 20, 22, 24 (bottom to top). (c1)-
(c3) Probability to return to the origin. The legends in this column also give the three
system sizes in units of the bare localization length. (In all calculation we fix the width

of the energy window ∆ε = 0.1)

1. Finite size effects are very strong, indeed the system size, L, exceeds the non-

interacting standard deviation, ∆x
(0)
ε (saturation value in time for V = 0), by a

factor of 10-15 (≈ L/∆x
(0)
ε ), but nevertheless the growth of ∆xε(t) changes with

L by as much as 30%.

2. The interaction mediated delocalization process is very slow. Even after a time

that typically corresponds to 0.1% of the inverse hopping (t−1 = 1) the width of

the wavepacket has grown by less than a factor of two as compared to ∆x
(0)
ε .

3. Depending on the spectral window, the transient dynamics is quite different. In

particular, the spreading of Πε(x, t) is enhanced by the interactions at low energy

densities while it is hindered at high densities as compared to the non-interacting

reference case.

5.3 Flowing of the dynamical exponent

In this section we quantify the time dependence of ∆xε(t) studying the exponent scaling

function βε(t), which is defined by:

βε(t) ≡
d log ∆xε(t)

d log t
, (5.7)
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which at long times quantifies the rate of growth of ∆xε(t) ∝ tβε(t=∞). For diffusive

systems βε(t = ∞) = 1/2, while βε(t = ∞) < 1/2 for subdiffusion. Figure 5.1 (b1-b3)

shows the βε−function as a function of ∆xε(t)/∆x
(0)
ε . It very clearly highlights the fact

that beyond a certain transient time, τε (set by the kink position), a slow dynamics sets

in which reveals itself by a high degree of sensitivity to the system size, L. Always in

Fig. 5.1 (b1-b3), all traces of βε(t) experience a kink with a position evolving with the

energy density ε that does not collapse after rescaling of the abscissa with ∆x
(0)
ε . While

the range of L-values available to us is not sufficient to study the asymptotic limit (in

L and t), our data nevertheless gives a non-vanishing lower bound for βε(t) and hence

indicates delocalization, at least near the band-center. With this caveat, we notice that

the qualitative behavior seen in all energy ranges is the same: with L increasing, there is

a pronounced trend for βε(t) to grow (at fixed long time), see Fig. 5.1 (b1-b3) and inset.

Strictly speaking, we thus find no evidences for an upper bound to βε below the diffusion

limit 1/2, i.e. for genuine subdiffusion. Moreover, the growth (with L) being similar

in all energy windows, suggests the lack of MBME at W=2.5 for the energy-densities

inspected. The picture is similar for other choices of W (. 3.0). Indeed, Fig. 5.2 shows
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Figure 5.2: Time dependence of the exponent βε(t) = d ln ∆xε(t)/d ln t for different
disorder W = {2.0, 2.5, 3.0, 3.5} and system sizes (L=16, 18, 20, 22) at four different
energy densities ε = {0.1, 0.125, 0.5, 0.875} with ∆ε = 0.1 and V = 1.0. Inset: Shows
the same data as fourth column but zoomed for better visibility of the trend in the data

with increasing system sizes.
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the evolution of the βε(t) over ∆xε(t)/∆x
(0)
ε for L = {16, 18, 20, 22}, at four energy

densities and four disorder values close to the MBL transition (W = {2.0, 2.5, 3.0, 3.5}),
which is believed to be around Wc ≈ 3.5. For these data we usually perform around

106 disorder realizations for small system sizes (L . 20), while for larger system sizes

the data is averaged over around 104 disorder samples. Furthermore, we give a detailed

analysis of βε(t) for several values of W and ε.

1. ε=0.5:

Figure 5.2 (3rd column) shows the result for values in the middle of the spectrum.

In this regime the data clearly indicates that the dynamics is (transient) subdif-

fusive with an (effective) exponent, βε(t) < 1/2, which depends strongly on the

system size L. The L−dependence is reflected via the upward movement of the

βε(t). We interpret this systematic trend as an indication to delocalization.

2. ε = 0.1, 0.125:

Fig. 5.2 (1st, 2nd column) shows the evolution of the exponent βε(t) for different

system sizes in the low energy density regime. Previous studies assigned this region

to be many-body localized (at W & 2.0, V = 1.0) as we have shown in Chapter 2

(Fig 2.9). However, for disorder strength below W . 3.5, the upward trend seen

with these curves is similar to the one in the band center, suggesting the presence

of a (slow) delocalization mechanism, which is inconsistent with the assignment to

the MBL phase and the existence of a mobility gap in this parameter range. The

proliferation of statistical noise precludes a further analysis about whether or not

at even larger disorder, an MBME could exist.

3. ε = 0.875:

At disorder values below W . 3.0 a systematic delocalizing trend at largest times

is seen, which we interpret as an indication of a very slow delocalization mech-

anism (Fig. 5.2, 4th column). Concerning statements about MBME at larger

disorder values, we consider our data to be inconclusive due to strong statistical

fluctuations.

Recapitulating, at larger disorder and close to the transition, W≈Wc, the situation is

numerically less conclusive due to residual statistical noise. Moreover, we have ascer-

tained that our choice of the width ∆ε of the energy density shell was sufficiently narrow

so that our results for Πε(x, t) and its variance are (essentially) independent of it. In

Fig. 5.3 we show the evolution of the exponent βε(t) for two different values of the width

∆ε = 0.1, 0.2 of the box function at energy density ε = 0.25. The data is averaged over

& 104 disorder configurations. As it is easily deferred from the figure, the curves are

almost indistinguishable from each other. For this reason, we choose ∆ε = 0.1.
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Figure 5.3: Evolution of the exponent βε(t) = d ln ∆xε(t)/d ln t for different val-
ues of the width of the energy density ∆ε for L = 16 and disorder strengths

W = {2.0, 2.5, 3.0, 3.5} and ε = 0.25.

5.4 Return probability

In the previus section, we studied the mean square displacement, which is a global quan-

tity. In this section, we study the return probability, which is a local probe. In one dimen-

sional diffusive systems the return probability associated with a spreading wavepacket

relates to the variance Πε(0, t) ∼ 1/∆xε(t), merely stating that the wavepacket is in-

ternally homogeneous. The data displayed in Fig. 5.1 (c1 - c3) does not adhere to this

fundamental idea: Πε(0, t) is close to stationary and therefore does not follow the 1/∆xε

law, most clearly seen in the low and high energy density regimes. This observation finds

a natural explanation adopting the idea of strong disorder induced fractality.

Indeed it is well known that in the presence of (multi-)fractality the return-probability

can be enhanced, Πε(0, t) ∝ ∆x−αεε , with 0 ≤ αε < 1 [75]. A very slow decaying return

probability can therefore also indicate a fractal-type behavior, i.e., αε being significantly

smaller than unity. Unfortunately, it is very challenging to extract αε reliably from our

data, because our observation window for ∆xε(t)/∆x
(0)
ε does not exceed a factor of

2-3. Nevertheless, we still report a possible fitting for all values of W and ε which

have been study. Fig. 5.4 shows the evolution of the Πε(0, t) over ∆xε(t)/∆x
(0)
ε for

L = {16, 18, 20, 22}, at four energy densities and four disorder values close to the MBL

transition (W = {2.0, 2.5, 3.0, 3.5}). The slow decay of the return probability is clearly

visible for disorder values not too far from the transition. A power law fit of the data

is also provided to highlight the slowness of the decay. However, due to the small time

window (only a factor of 2 in ∆xε(t)/∆x
(0)
ε ) the fit is not completely reliable and should

be taken only as a guide to eye.
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5.5 Density propagator

In the previous sections to characterize the slow dynamics, we studied two quantities, a

local probe (return probability) and a global probe (mean square displacement). Never-

theless, only these two quantities are not able to describe completely the full propagation.

Hence, to better understand the transient subdiffusive behavior, here we look at the time

dependence of the full distribution function, Πε, both in real and q-space. Figure 5.5

(a1-a3) displays a density-propagator Πε(x, t) that is far from Gaussian. To highlight its

shape (curvature at small q,large x) we rewrite Πε(q, t) employing an (inverse) memory

kernel, κε(q, t),

Πε(q, t) =
(
1 + q2/κε(q, t)

)−1
, (5.8)

where −∂2
qΠε(q, t)|q=0 = 2/κε(0, t) ∼ ∆xε(t)

2. A numerical example can be read off

from Fig. 5.5 (b-c). It displays κε at three different energy densities at intermediate

disorder strength W=2.5. Notice that the non-interacting kernel, κ
(0)
ε (q, t), is rapidly

growing with wavenumber, q (Fig. 5.5(b1-b3)). This behavior reflects the presence of
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Figure 5.4: Time dependence of the return probability Πε(0, t) in double log scale
for different disorder W = {2.0, 2.5, 3.0, 3.5} and system sizes (L=16, 18, 20, 22) at four
different energy densities ε = {0.1, 0.125, 0.5, 0.875} with ∆ε = 0.1 and V = 1.0. The
solid line serves as a guide of a power-law fit and also an estimate of the corresponding

exponent αε is provided.
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Figure 5.5: (a1)-(a3) The density propagator Πε(x, t) in the delocalized regime
(ε=0.1, 0.5, 0.875, W=2.5, L=24) at two times t=40, 100. The log-normal plot illus-
trates non-Gaussian shape. Solid line in (a3) shows a stretched exponential fit with an
exponent ≈ 0.7. (b1)-(d3) The corresponding memory kernel κε(q, t)=q

2/(Π−1
ε (q, t) −

1), see also (5.8), for the case without (b1)-(b3) and with interactions (c1)-(d3). The
structure at larger wavenumbers illustrates the (non-exponential) short-distance behav-
ior. The absence of effects in time (and system size, not shown) highlights the localized

character of the non-interacting kernel κ
(0)
ε . In contrast, the evolution of the interacting

kernel is the hallmark of delocalization. (d1)-(d3) Shows the L-dependence of κε(t).

a short-distance cutoff, a, such as the lattice constant, terminating the long-distance,

exponential tail. It exists in a similar way also in the interacting kernels κε(q, t) (Fig. 5.5

(c-d)). Moreover, we can notice that κε in Fig. 5.5 (b1,b3) exhibits small oscillations

in q that result from the finite system size. We would like to draw attention to a small

additional feature that emerges for the high-energy kernel at very small wavenumbers;

as seen in Fig. 5.5 (c3) with increasing time a cusp develops. It could be seen as a

precursor indicating a stretched exponential shape in real space and the corresponding

fit is shown in Fig. 5.5 (a3). The propagator can also be studied in the x-space. Indeed,

Fig. 5.6 shows the distribution function Πε(x, t) in real space taken in the subdiffusive

phase at high energy density in the vicinity of the MBL transition. In the tail region a

weak upturn is seen that indicates deviations from a simple exponential behavior. We

describe the data on a phenomenological level employing a stretched exponential, three

parameter fit Πε(x, t) ≈ exp(−|x/ξ|η). Indeed, the fitting suggests that the exponent η

is significantly smaller than one, η ≈ 0.7.

5.6 Numerical Tests

In this section we give few numerical tests, showing that our approximated methods

are faithful. As we discussed, we have studied the energy-projected density relaxation
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Figure 5.6: Distribution function Πε(x, t) in real space exhibiting a decay slower
than exponential in the tail region. Solid line represents a stretched exponential fit,
exp(−(x/ξ)η), with fitting parameters η ≈ 0.7, ξ=0.464 ± 0.12. For comparison, the
dotted line indicates a simple exponential. (Parameters: ε = 0.875, L = 24, W =
2.5, V = 1.0 at an intermediate time t = 100.) We have also shown the corresponding

data for L=16 (green symbols) to ascertain that finite-size effects are negligible.

function

Φε(x, t) = [〈n̂x(t)n̂0〉ε − 〈n̂x〉ε〈n̂0〉ε] Θ(t), (5.9)

where 〈Ô〉ε = TrÔρ̂(ε), and ρ̂(ε) projects into a narrow spectral range near energy

density ε with width ∆ε. To calculate the two-point space-time correlator Eq. (5.9) for

large systems (L=24) and long times (≈103), we use three approximations:

1. The density matrix ρ̂(ε) is constructed using Chebyshev polynomials.

2. The energy projected trace denoted via the angular brackets 〈. . .〉ε is evaluated

stochastically.

3. The time evolution is performed employing a standard kernel-polynomial method

based on Chebyshev polynomials (Appendix A).

5.6.1 Chebyshev-representation of the density matrix ρ̂(ε)

For the numerical evaluation we represent the density matrix ρ̂(ε) as a simple function

of the Hamiltonian H̃ (H̃ is the rescaled Ĥ so that its energy density is between {0, 1})
in the following way,
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Figure 5.7: Convergence of the variance of the density propagator with respect to the
number of moments, M , used in Eq. (5.11). R defines the number of random vectors

taken for the trace evolution. Only 16 disorder samples are taken for averaging.

ρ̂(ε) =
R[ε−∆ε/2,ε+∆ε/2](H̃)

TrR[ε−∆ε/2,ε+∆ε/2](H̃)
, (5.10)

where R[a,b](x) is the box function of unit height in the interval [a, b]. We approximate

ρ̂(ε) as a truncated Chebyshev series,

ρ̂(ε) ≈
∑M

i=0 µiTi(H̃)

Tr
∑M

i=0 µiTi(H̃)
, (5.11)

where {Ti(x)} denote the Chebyshev polynomials. M denotes the order of the expansion

taken sufficiently large (M ≥ 3000) to assure convergence Eq. (5.11) (see also Fig. 5.7

right panel). The expansion coefficients {µi} are given as follows: µ0 = 1
π (arccos a −

arccos b), µ1 = 1
π (
√

1− a2 −
√

1− b2), µn≥2 = 1
nπ (sin (arccosnb) − sin (arccosna)). In

Fig. 5.7 we display the convergence of the time evolution of our main observable, the

variance ∆xε(t), with respect to the number of moments in the sum Eq. (5.11).

5.6.2 Stochastic trace evaluation and convergence

The expectation values 〈Ô〉ε of an operator Ô has been calculated using stochastic trace

evaluation. The idea is to represent a trace as an average over an ensemble of random

state vectors {|r〉}Rr=0:

〈Ô〉ε ∼
1

R

R−1∑
r=0

〈r|ρ̂(ε)Ô|r〉, with R� 1. (5.12)

Truncating the sum at an upper cutoff, R, for global variables the relative error decays
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Figure 5.8: Trace evaluation: comparison between exact and stochastic methods
for Πε(q, t) and ∆xε(t)). (Parameters: L = 14, middle of the band ε = 0.5 and
W = 3.0, V = 1.0). (a) Density propagator Πε(q, t = 40) in q-space for a single disorder
realization. The (green) dots represent the exact data calculated using the full trace
employing exact diagonalization; the dashed lines are evaluated with different number
of random vectors R = {2, 8, 16} (blue, black, red) employing the stochastic trace
formula (5.12). (b) Density propagator Πε(q, t) averaged over 16 disorder realizations.
As can be seen, the average of Πε(q, t) over the disorder realization converges rapidly
in the number R of stochastic state vectors as opposed to Πε(q, t) taken for a single
disorder realization. (c),(d) A similar trend is also visible with real space data, here

shown for the second moment of Πε(x, t): 〈∆x2(t)〉.
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Figure 5.9: Shows the variance ∆xε(t) for three trace vectors R = {2, 8, 16} after a
small disorder averaging Ndis = 32 for two different system sizes L = 16, 20.

as 1/
√
DR (central limit theorem), with D denoting the dimension of the Hilbert space.

Hence, the stochastic trace evaluation is more efficient in very high dimensions (for

variables that sample the full system size). In our case, D is exponentially large in the

system size, L, and is given by
(
L
N

)
, N being the particle number. For smaller system

size, L . 20, we typically use R=16 random state vectors, while for larger system sizes

we only keep R=2. The convergence properties are illustrated in Fig. 5.8 (a). The

plot displays a comparison between the stochastic trace estimate and an exact trace

evaluation. As is seen there, the convergence properties of the distribution Πε(q, t) with

R are actually quite poor; at R=16 deviations are still of the order of a few percent.

However, note that the convergence withR is drastically improved for the traces averaged

over the disorder ensemble, i.e. for 〈Ô〉ε Fig. 5.8 (b) shows that even for a relatively

small ensemble of Ndis=16 samples a good convergence is reached already with R=2.

The same behavior is seen at all times. To illustrate this we display similar data also

for the variance, ∆xε(t). Again, the disorder averaged variance converges very rapidly
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with the number R of random states kept for the trace evaluations. Figure 5.9 further

illustrates the dependence of the variance on the averaging over trace vectors, now for

two larger system sizes. As it is clear from both plots, the variance is well approximated

at all times with only a small number of trace vectors. With increasing system size and

improving disorder average the trace approximation becomes progressively efficient, this

is because the error scales as ∝ 1/
√
D.

5.7 Summary

In this section we summarize the results of this chapter:

1. Within our observation window, Πε(x, t) exhibits a very pronounced non-Gaussian

spatial shape that decays in a (simple) exponential fashion or even slower. It

is tempting to associate this finding with the stretched exponential behavior of

correlations that has been proposed to exist due to fractal Griffiths regions in the

localized phase near the phase boundary.

2. The time dependence of its width ∆xε(t), is very sensitive to the system size, L.

In order to highlight the effects of finite size in the time evolution, we studied

the dynamical exponent βε(t) = d log ∆xε(t)
d log t . In the ergodic phase at intermediate

times βε(t) grows in a subdiffusive manner with values βε(t)<1/2 consistent with

other reports [15, 60, 94, 96, 150]. However with increasing time, βε(t) becomes

progressively L-dependent. At these longer times a similar tendency of growing

βε(t) (with L) is observed in all spectral windows at low, intermediate and high

energy density. This strong growth prevents us from confirming the existence of

genuine subdiffusion that would exhibit a time-independent exponent βε<1/2. We

detect a slow growth of βε(t) even in those regions of the phase diagram that have

been identified previously as localized. Thus, the delocalized phase is larger than

reported previously [95], which is associated with a very slow collective dynamics.

Such a behavior is not entirely unexpected, perhaps signaling the breakdown of

localization due to “hot bubbles” [42].

3. For the probability Πε(0, t) to return to the origin one might have suspected

Πε(0, t)∝1/∆xε(t), suggesting Πε(0, t) ∝ t−βε(t=∞). Instead, our data indicates

that the subdiffusive transients behavior coexists with an elevated return proba-

bility consistent with (possibly transient) weakly ergodic phases with fractal phe-

nomenology, Πε(0, t) ∝ ∆xε(t)
−αε and 0 ≤ αε < 1.

These results are summarized graphically in Fig. 5.10. Due to the finite resolution of

our simulations, we could not rule out the possibility of the existence of MBME for low
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Figure 5.10: A qualitative phase diagram of different dynamical regions in the disorder
energy density plane of the t-V model. At disorder strength W below the many-
body localization transition Wc, we propose a transient subdiffusive, weakly ergodic

dynamical regime with an anomalously slow decay of the return probability.

energy density values, thus this region of the phase-diagram (Fig. 5.10) has been left

uncolored (white).

Based on these findings we propose the following scenario: There is a timescale τε

beyond which a slow dynamics kicks in together with diffusive behavior. Approaching

the MBL transition from the delocalized side, this time scale diverges; simultaneously,

βε(t) at times t.τε is rapidly decreasing, which might suggest a small value of βε at the

MBL transition. In this scenario, the critical fixed-point would carry excited states that

exhibit phenomenological features reminiscent of (strong) multifractality [51].

We conclude with two remarks relating our results to the most recent literature and

with a problem that we will describe in the next chapter (Chapter 6).

1. Consistent with our findings, also Serbyn et al. observe very strong finite size

effects in their study of the Thouless energy [132]. Like us, they interpret their

results as indicating that the system sizes are too short for observing the asymp-

totic thermalized behavior. Unlike us, they go a step further proposing that the

numerical data at small system sizes (below L=20) already reveals hydrodynamic

properties of the critical fixed point, such as multifractality. This conclusion for us

is difficult to draw, because one would expect system size independent exponents

in the critical window, which we don’t observe.

2. Studies of Anderson localization of random regular graphs (RRG) (Chapters 6)

show the possible existence of a multifractal phase [7, 41, 82]. Nevertheless, recent

woks [57, 145] give indications that this phase could be a finite size effect, and that
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with increasing system size ergodicity will be restored. When interpreting ∆xε(t)

as an effective system size, then the transient subdiffusive behavior observed by

us finds a natural interpretation within the RRG-perspective.



Chapter 6

Typical versus mean properties as

a sensitive probe of multifractal

states

As we have seen in the previous chapter (Chapter 5), an intermediate phase has been

argued to exist for one-dimensional MBL systems, in which the transport is subdiffusive.

We have questioned the existence of this phase, showing that the exponents characteriz-

ing the subdiffusive transport do not converge for the available system sizes, thus leaving

the possibility to have diffusive transport in the thermodynamic limit.

Moreover, as discussed in the introduction (Chapter 2), an MBL problem can be mapped

onto an Anderson problem in Fock space (tree-like structure). This mapping has con-

structed a fundamental link between Anderson localization in hierarchical tree structures

and many-body physics [6]. In Chapter 1 we have also discussed the Anderson prob-

lem on the Bethe lattice and we have shown that a localization-delocalization transition

(Anderson transition) occurs. A Bethe lattice has a special tree-like geometric structure

(Fig. 1.2), and it is free of loops. Moreover most of its sites lie at the boundary, thus in

principle different choices of boundary conditions could drastically change the physics

of the system. A random regular graph (RRG) is a tree-like structure Fig. 6.1, which

locally looks like a Bethe lattice, but without a boundary. Indeed, it is possible to obtain

a RRG from a Bethe lattice by randomly closing its boundary condition, but keeping

the local connectivity of the graph fixed. The RRG has an Anderson transition at the

same disorder strength of the Bethe lattice (Eq. 1.27) [82]. The structure of a RRG is

similar to the structure of the graph in Fock space (GFS) (Fig 2.3) to study an MBL

problem. In fact both have loops, nevertheless there are also differences:
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Figure 6.1: Random regular graph with 16 sites and with connectivity equal to three.

1. The connectivity of the GFS grows with the volume of the physical system, while

in a RRG the connectivity is fixed.

2. The site energies in the GFS are correlated, and typical fluctuations between them

scale as
√

logD (D is the dimension of the Hilbert space) but the difference of

neighboring on-site energies are of order one, while the on-site energies of the

Anderson model on a RRG are uncorrelated and neither their value nor their

fluctuations have any scaling with system size.

In addition to these differences, the MBL problem in first approximation can be mapped

onto an Anderson localization model on a RRG. Recently, it has been proposed that the

Anderson model on a RRG might have a new phase transition [7, 82] between an ergodic

phase, with states spanning uniformly the entire space, to a non-ergodic phase composed

of multifractal states which present strong fluctuations in space (Chapter 1). Neverthe-

less, the existence of this new phase has been strongly questioned giving indication that

it could be just a finite-size effect, and it is still generating an active debate [144, 145].

Understanding the existence of this non-ergodic phase in a RRG could shed light on the

existence of this subdiffusive intermediate phase found in the most intriguing problem of

an extensive interacting disordered many-body system(Chapter 5). In this chapter, we
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study the quantum dynamics of a particle initially localized on one site of the system. We

give a new characterization of multifractal states, emphasizing the importance of space

and disorder fluctuations. The chapter is structured as follows. First, we define the

models. We then explain the methods and the main idea of this new characterization.

Second, we benchmark this characterization with two models having critical states,

the power-law banded random matrix (PLBM) [51, 103] and the Rosenzweig-Porter

random matrix model (RPRM) [83, 124]. Finally, we use the same concepts to study

the Anderson model on a RRG to understand the existence of this putative new non-

ergodic phase.

6.1 Models and methods

We study the Hamiltonian

Ĥ :=

L∑
x,y

hx,y|x〉〈y|, (6.1)

represented in the basis of the site states |x〉, where L is the number of sites in the system.

We consider three different models that have a localization-delocalization transition with

wavefunctions changing properties from ergodic to localized via multifractal ones.

1. The PLBM [51, 103], which is obtained from Ĥ (Eq. 6.1) with hx,y = hy,x =

µx,y/(1 + (|x− y|/b)2a)1/2. Henceforth µx,y are independent uniformly identically

distributed random variables taken from [−1, 1]. This ensemble of matrices pa-

rameterized by a and b have a localization-delocalization transition at a = 1, for

any b. For a < 1, the model shows an ergodic phase and for a > 1 the eigenstates

are power-law localized. At the critical point (a = 1) all the states are multifractal

and the parameter b tunes the multifractal properties of the states from strong

(b � 1) to weak (b � 1) multifractality [90, 102, 103]. There is no mobility edge

in this model, i.e. for any a, b all the states are either extended or localized.

2. The RPRM [83, 124] is obtained by choosing hx,y = hy,x = µx,y/L
γ/2 for x 6= y,

while for x = y, hx,x = µx,x. The RPRM, like the PLBM, has no mobility edge,

but it has three distinct phases. For γ < 1 all the states are ergodic while for γ > 2

all the states are localized at a few sites. For 1 < γ < 2 the fractal phase arises [83].

By fractal states we mean that the wavefunctions can be considered ergodic but

in an extensive number of sites being still a zero fraction of the entire system.

The consequence of this kind of multifractality is that the exponents τq defined

by
∑

x |φE(x)|2q ∼ L−τq (Chapter 1) have the following form τq = (2− γ)(q − 1),

where φE(x) is an eigenstate of Ĥ at site x.
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3. The disordered RRG model which is obtained by taking hx,x independent uniformly

identically distributed random variables between [−W/2,W/2], hx,y = hy,x = −1

if the sites x, y are linked in the RRG with fixed local connectivity and hx,y =

hy,x = 0 otherwise. The local connectivity is taken to be three like in Fig. 6.1.

This model is believed to have a localization-delocalization transition called An-

derson transition (AT) at WAT ≈ 17.64 (Chapter 1). Moreover, it is a matter

of discussion [7, 57, 82, 145] the possibility of the existence of another transition

at smaller disorder strength between ergodic states to multifractal states. This

putative transition has been estimated to be around WEMT ≈ 10 (EMT, ergodic

to multifractal) [7, 82]. Consequently, it implies the existence of an entire phase

(WEMT < W < WAT ) composed of multifractal states. The RRG has mobil-

ity edges, thus the spectrum of Ĥ depending on the disorder strength can host

separated bands of energies composed of extended or localized eigenstates.

We are interested in studying these different extended phases (ergodic, non-ergodic mul-

tifractal, fractal) by investigating their dynamical properties. In particular, we study

the return probability starting from a state |x〉, defined by

R(t) :=
|〈x|P̂∆Ee

−iĤtP̂∆E |x〉|2

|〈x|P̂∆E |x〉|2
, (6.2)

where P̂∆E :=
∑

E∈∆E |E〉〈E| is the projector onto the eigenstates of Ĥ whose energy E

belongs to a small energy shell E ∈ ∆E = [−δE, δE] around the middle of the spectrum

of Ĥ.

The reason to use the projector P̂∆E is to avoid the mixing of states with different prop-

erties. Indeed, for the RRG, ∆E has been chosen small enough so that the eigenstates

involved in the dynamics are all extended, while for the other models (PLBM, RPRM)

P̂∆E = I, since no mobility edge is present. The average over matrix ensemble and initial

states |x〉 is indicated with a overline over the quantities considered. In particular, we

are interested in the mean and the typical values of R(t), defined respectively as R(t)

and elogR(t). The scaling of R(t) to zero with the system size L in the long-time limit

is also within our main focus (both typical and mean averages)

R∞ := lim
T→∞

1

T

∫ T

0
R(t)dt, (6.3)

elogR∞ := lim
T→∞

1

T

∫ T

0
elogR(t)dt. (6.4)

These quantities (R∞, elogR∞) provide information on the properties (ergodicity or

multifractality) of the eigenstates belonging to the energy shell ∆E, since the mean R∞
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Figure 6.2: (a) R(t) and elogR(t) as a function of time t for the PLBM in a log-log
scale in the multifractal phase (a = 1, b = 0.5) for a fixed L = 214. The dashed lines
are guides for the eyes to emphasize the decay with time is different between R(t) and

elogR(t). (b) R(t) and elogR(t) as a function of time t for the RPRM in the fractal

phase (γ = 1.25) for L = 214, R(t) ∼ elogR(t) ∼ e−ETht, with ETh the Thouless’s

energy (ETh ∼ L1−γ) [83]. (c) R∞
−1

as a function of e−logR∞ for the PLBM in two

different phases of the PLBM: In the ergodic phase (a = 0.5, b = 1) R∞
−1 ∼ e−logR∞ ,

while in the multifractal phase (a = 1, b = 0.5) R∞
−1 ∼ e−αlogR∞ with α < 1. The

inset shows the scaling of the typical IPRx versus the typical R(∞). (d) R∞
−1

as a

function of e−logR∞ for the RPRM in two phases: in the ergodic phase (γ = 0.5) and

in the fractal phase (γ = 1.25), in both of them R∞
−1 ∼ e−logR∞ .

can be expressed in terms of the inverse participation ratio (IPR) of wavefunctions {φE}
of Ĥ,

R∞ = IPRx =

∑
E∈∆E |φE(x)|4

(
∑

E∈∆E |φE(x)|2)2
. (6.5)

Note that contrary to the IPR defined in Chapter 1, R∞ is calculated summing over the

energy index E. The typical value elog IPRx of IPRx is not equal to elogR∞ in general.

This difference is due to the time fluctuations of R(t). Nevertheless for long-times (of

the order of the saturation value for a finite system) the time fluctuations of R(t) scale

to zero as a function of L. Therefore at first approximation, the corrections due to

time fluctuations do not change the L-scaling elog IPRx ∼ elogR∞ . However, the scaling

of IPRx and elog IPRx can, in principle, be different depending on the phase. Indeed,

in an ergodic phase the envelope of the wavefunctions {φE} is in first approximation
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Figure 6.3: The figure shows R(t) and elogR(t) in the ergodic phase of the PLBM for
two systems sizes.

uniformly distributed over the entire system (|φE(x)|2 ∼ 1/L), thus it does not reveal

strong spatial fluctuations. In this case, we do not expect any difference between the

scaling of mean and typical values. In a fractal phase, like in the RPRM, the magnitude

of wavefunctions in space does not have large fluctuations, since the fractality is only

due to its support, i.e., the wavefunctions are ergodic in a small portion of the entire

system. Nevertheless, in a multifractal phase the wavefunctions {φE(x)} could have

strong spatial dependence, which could imply a possible difference in scaling with L

between R∞ and elogR∞ .

6.2 Return probability for the power-law banded matrices

and for the Rosenzweig-Porter random matrices

In this section we study R(t) and its long-time saturation value for the PLBM and

RPRM. We perform the time evolution using exact full diagonalization. At the critical

point of the PLBM, where all states are multifractal, both R(t) and elogR(t) decay

algebraically, R(t) ∼ t−α1 and elogR(t) ∼ t−α2 . Figure 6.2(a) shows the algebraic decay

of R(t) and elogR(t) at criticality (multifractal phase). As observed, the two rates of

decay (α1, α2) are different from each other due to the inequality between arithmetic and

geometric mean α1 < α2. Instead, in the ergodic phase (a < 1) R(t) and elogR(t) decay

asymptotically at the same rate, as shown in Fig 6.3. As a consequence of a different

rate of decay between R(t) and elogR(t), in the multifractal phase the saturation values

R∞ (Eq. 6.3) and elogR∞ (Eq. 6.4) may have different scaling to zero as functions of

L, R∞ ∼ L−D2 and elogR∞ ∼ L−Dtyp (D2 < Dtyp < 1), while in an ergodic phase

D2 = Dtyp = 1. Figure 6.2(c) shows R∞
−1

as a function of e−logR∞ in a log-log plot
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Figure 6.4: Panel (a) shows the probability distribution P(y) for the rescaled random

variable y = IPRx/e
log IPRx for PLBM in the ergodic phase (a = 0.5, b = 0.5) for

several system sizes. Panel (b) shows the probability distribution P(y) in the multi-
fractal phase (a = 1, b = 0.5), in this case P(y) has power-law tails, indicating that

IPRx
−1 ∼ e−αlog IPRx with α < 1.

for two different values of a, b. One in the ergodic phase and another in the multifractal

phase. In the ergodic phase R∞
−1

and e−logR∞ scale in the same way as a function

of system size (R∞
−1 ∼ e−logR∞). In a multifractal phase R∞

−1
and e−logR∞ scale

in a different way, R∞
−1 ∼ e−αlogR∞ with α = D2/Dtyp < 1. The inset of Fig. 6.2(c)

shows elog IPRx as a function of elogR∞ in a linear scale, giving indication that elogR∞ ∼
elog IPRx . Furthermore, from the equality R∞ = IPRx (Eq 6.5) we have that IPRx

−1 ∼
e−αlog IPRx with the same α as in R∞

−1 ∼ e−αlogR∞ .

The difference in scaling between the mean and typical value is also possible to observe

in the probability distribution of IPRx (R∞). In the multifractal region the probability

distribution of IPRx becomes long-tailed giving the discrepancy in the scaling between

mean and typical values as shown in Fig. 6.4 for the rescaled random variable y =

IPRx/e
log IPRx . Instead, in the ergodic phase the probability distribution of R∞ has

exponentially decaying tails and it shrinks with increasing system size, indicating that

IPRx ∼ elog IPRx .

In the RPRM both R(t) and elogR(t) decay exponentially (∼ e−ETht) in time [83] in

the non-ergodic phase, 1 < γ < 2 (fractal phase). In the ergodic phase (γ < 1) R(t) ∼
elogR(t) decays algebraically with oscillations. Figure 6.5 showsR(t) in the ergodic phase

for the RPRM. In this case we use a projector P̂∆E =
∑

n∈[(1−η)L
2
,(1+η)L

2
] |En〉〈En| with

0 < η < 1. It is possible to prove that R(t) ∼ elogR(t) ∼ [sin(δEt)/(δEt)]2 with

δE = π
2 ηL

(1−γ)/2. Finally, Fig. 6.2(b) shows R(t) and elogR(t) in the fractal critical

region. It provides evidence that bothR(t) and elogR(t) decay exponentially in time with

the same rate ETh. The same dependence on time for mean and typical implies that

their saturation values scale to zero as a function of L in the same manner. Figure 6.2(d)
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shows R∞
−1

as a function of e−logR∞ for two values of γ, one in the ergodic phase and

another in the fractal phase, in both phases R∞
−1 ∼ e−logR∞ .
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Figure 6.6: R(t) for the disorder-free case W = 0 for several system sizes, R(t) ∼ t−2.

6.3 Return probability in a random regular graph

In the previous section we have shown that the difference in the behavior between the

mean and the typical value of R(t) can be used to distinguish ergodic and multifractal
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phases. We now study R(t) in the RRG, where the existence of a multifractal phase is

under debate mainly because of the two following issues [82, 145].

1. The existence of a correlation length Lcor that diverges approaching the Anderson

transition (Lcor ∼ ec/
√
WAT−W ) [30, 84, 162]. Recently, a different expression for

Lcor, Lcor ∼ ec/(WAT−W ) has been proposed [82]. For finite systems of size L

smaller than Lcor the wavefunctions could share properties of both localized and

ergodic states and thus they could be mistakenly classified as multifractal.

2. Even for L > Lcor, finite-size corrections for the IPR might be quite strong∑
x |φE(x)|4 ∼ log(L)η̃L−D2 , with η̃ ≥ 0. The calculation of D2 (D2 = 1 for

ergodic, D2 < 1 for non-ergodic) is an extremely challenging problem [145].

RRG has a mobility edge, thus in our study we consider only the energies in the middle

of the spectrum, choosing |∆E| = 1, thereby ensuring that all the states {φE}E∈∆E

share the same properties for our choice of the disorder strength W . We perform the

time evolution using full diagonalization for small systems sizes L ≤ 214, and using the

Chebyshev integration technique (Appendix A) for larger 215 ≤ L ≤ 220. The projector

P∆E has been constructed using full diagonalization for L ≤ 214, for larger 215 ≤ L ≤ 220

it is constructed using a truncated Chebyshev expansion (Chapter 5). Figure 6.6 shows

the return probability for the free case (W = 0), R(t) decays algebraically with time

(R(t) ∼ t−2) and oscillations are present. Instead, Fig. 6.7(a) shows time dependence

of the mean of R(t) for a fixed disorder strength W = 11 for several system sizes. In a

log-log scale R(t) shows a clear bending which is consistent with a stretched exponential

decay R(t) ∼ Ae−Γtβ (up to possible sub-leading polynomial prefactor). This stretched

exponential behavior holds for all values of disorder strength W in the extended phase

(W < WAT ) for R(t) , as shown in Fig. 6.7(b). Also the typical value of R(t) decays

like a stretched exponent, elogR(t) ∼ Atype
−Γtypt

βtyp
, as shown in Fig. 6.7(c). In the

considered range of disorder strengths 6 < W < 12 the stretched exponential parameter

β shown in Fig. 6.8(a) decays linearly. The prefactor Γ in front of tβ, Fig. 6.8(b), decays

with disorder strength in a different manner. The linear extrapolation of β(W ) gives

reasonable values of the Anderson localization transition WAT , where β(WAT ) = 0, and

the small disorder limit β(W → 0) = 1 consistent with works on classical diffusion on

the Bethe lattice [27, 36]). Thus, the point W = 0 is a singular point (Fig 6.6), for any

infinitesimal amount of disorder the return probability will decay exponentially fast with

time. It is important to underline that the time scale in which the decay of R(t) can

be distinguished from an algebraic decay diverges approaching the Anderson transition

e.g., for W = 14 the bending in a log-log plot is only visible for t? ≈ 104 and it requires

having system size of L = 220, thus the decay of R(t) for smaller times and smaller
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Figure 6.7: The Panel (a) shows R(t) as a function of t for the RRG for a fixed
disorder strength W = 11 and several system sizes L = 216, 218, 220. The dashed line

has been obtained with a three parameter fit, R(t) = Ae−Γtβ . The panel (b) shows
R(t) for a fixed system size (L = 220) and for several values of W . The panel (c) shows

the typical value elogR(t) for the same parameters of panel (b).

system sizes could be interpreted as a power law [21]. Moreover, in a recent work [21] it

is shown numerically that a possible power law decay of R(t) ∼ t−ζ is consistent with

an algebraic dependence of the overlap of different wavefunctions K(ω) ∼ ω1−ζ defined

as

K(ω) =
1

N
∑

E,E′∈∆E

|〈x|E〉|2|〈E′|x〉|2δ(ω − E + E′) (6.6)

with a normalization constant N ensuring
∫
dωK(ω) = 1. Indeed, R(t) and K(ω) are re-

lated by R(t) ∼
∫
dωK(ω) cos(ωt) [21]. However, using stationary phase approximation

it is possible to show that for R(t) ∼ e−Γtβ , the overlap decays as K(ω) ∼ ω−
1+(1−β)−1

2
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Figure 6.9: (a)IPRx and elog IPRx as a function of L for a fixed disorder strength

W = 11 for the RRG. (b) IPRx
−1

as a function of e−log IPRx (IPRx ∼ e−αlog IPRx)
for several W , each point of the curve indicates a different system size L = 29 − 217.
(c) Panel shows αL as a function of W . αL has been extracted from the linear fitting
of log IPRx versus log IPRx with an enlarging L. Here L indicate the largest system
size considered in the fit starting with L = 29. The inset of panel (b) shows αL and DL

as a function of L. DL has been extracted from the linear fitting of − log IPRx versus
log(L).

for moderately large ω and as K(ω) ∼ ω−(1+β) for very large ω. As for observed values of

β . 0.5 the difference between above mentioned exponents is less than 7 %, a stretched

exponential behavior for R(t) could be also consistent in the first approximation with a

power law behavior of K(ω).

Aiming to shed light on the existence of the putative multifractal phase in a RRG, we

analyze the dependence of the saturation values R∞ = IPRx (Eq. 6.5) and elogR∞ ∼
elog IPRx on system size L. Due to shorter times, it is difficult to extract the saturation

values of R(t) reliably. Therefore, we find it easier to analyze IPRx, which has been

calculated using a shift-inverse exact diagonalization technique. Figure 6.9(a) shows

IPRx and elog IPRx as a function of L in a log-log scale for fixed disorder strength



111

0 1 2 3 4 5
10-6

10-5

10-4

10-3

10-2

10-1

100

101

P(
y)

W= 4

L= 210

211

212

213

214

215

216

10-1 100 101 10210-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101 W= 10

10-1 100 101 102

y= IPRx/e
logIPRx

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

P(
y)

W= 11

10-2 10-1 100 101 102

y= IPRx/e
logIPRx

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100 W= 12

Figure 6.10: The Figure shows for four different values of W the probability distri-

bution of the rescaled variable y = IPRx/e
log IPRx .

W = 11. Strong finite-size effects are visible for available systems sizes, which makes

the extrapolation of D2 and Dtyp nearly impossible. Nevertheless, IPRx and elog IPRx

seem to suffer from similar finite-size effects. Indeed, plotting IPRx parametrically as a

function of elog IPRx drastically reduces finite-size effects. Figure 6.9(b) shows IPRx as

a function of elog IPRx for several values of W , giving indication that IPRx ∼ eαlog IPRx .

As we have already shown in the ergodic phase α = 1, while in a multifractal phase

we expect α = D2/Dtyp < 1. Using an enlarging linear fitting procedure we are able

to extract the exponent α as a function of system size L, αL, (L here indicate the last

system size that has been taken in consideration in the fit starting from L = 29) and

disorder strength. The inset of Fig 6.9(b) shows for W = 11 the two exponents DL and

αL as a function of L, extracted with the same procedure. DL has a change of 30 %

for available system sizes, while αL changes only by 3 %. Figure 6.9(c) shows αL for

several L as a function of W . For W < 10, α ≈ 1 providing evidence that in this regime

the phase is ergodic. For W > 10 ≈WEMT , α drops to a smaller value confirming that

for available systems sizes the system is not ergodic. The flow of αL towards unity with

increasing L is visible at least for 10 < W < 12, while for W > 12 the data seems to be

converged. Nevertheless, it is important to point out that the convergence could be due

to finite system size small compared to the correlation length Lcor. We can also analyze
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the full probability distribution of IPRx. Figure 6.10 shows the probability distribution

P(y) of the rescaled variable y = IPRx/e
log IPRx . In the ergodic phase W = 2, P(y)

shrinks with L, indicating that IPRx ∼ elog IPRx . For larger values of W , P(y) develops

long tail (algebraically decaying tails), which is the main requirement to have a different

scaling with L between the mean and the typical value.

6.4 Summary

In this chapter, we have studied the quantum dynamics of an initially localized particle

in several disordered systems, giving a different characterization of multifractal phases.

In particular, we study the return probability R(t): the quantum probability to return

to the initial site. In a multifractal phase, fluctuations over disorder and initial site

are so strong that the long-time limit of the mean and typical value of R(t) scale to

zero differently as a function of system size, while in an ergodic phase the scaling is

the same. First, we benchmark these ideas in the power-law banded random matrix

ensemble. We show that the long-time limit of the mean and typical value of R(t) scale

to zero in the same way in its ergodic regime, while at criticality, where all the states

are multifractal, the scaling of these observables differ from each other. Second, we

point out, analyzing the Rosenzweig-Porter random matrix model, that this difference

in the scaling disappears in the case of only fractal states. Finally, we use this idea

to tackle the disordered random regular graph, in which the existence of a multifractal

phase is under debate. We present converged data, which could offer numerical evidence

for the existence of this multifractal phase. Nevertheless, we discuss that this apparent

convergence could also be due to the fact that system sizes are small compared to the

correlation length of the system. Furthermore, we show that R(t) decays with time like

a stretched exponential, so far the system is not in the localized phase, and extracted

the parameters of this stretched exponential decay.



Part IV

Role of Symmetry and

Correlation in the disorder
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In the next chapter, we construct a non-interacting fermionic model with correlated

disorder and particle-hole symmetry. We show how the interplay between correlated

disorder and symmetry can lead the system to have subdiffusive charge propagation,

whereas the growth of entanglement is logarithmically slow.



Chapter 7

The generalized Dyson model

We have already discussed that the interplay between interaction and quenched disorder

can drive a quantum phase transition even at finite energy density (Chapter 2). More-

over, we have seen in Chapters 2,3, that the interaction creates a dephasing mechanism

between degrees of freedom localized in space, generating a slow propagation of infor-

mation in an MBL phase. Nevertheless, other mechanisms can also break localization in

one-dimensional disordered systems. A possible example is the presence of symmetry in

the system. It is known that the presence of particle-hole symmetry and disorder in a

chain of non-interacting fermions, creates quasi-localized states [141, 161]. As a conse-

quence, these quasi-localized states will produce an anomalous transport in the system.

Another possible mechanism to modify the localization properties of a system is to in-

troduce correlation in the disorder. Indeed, correlations between onsite energies can give

a proliferation of resonant energies, thus a break down of localization [70]. In this chap-

ter with the aim to understand the interplay between symmetry and correlation in the

disorder, we define a model with particle-hole symmetry and correlated disorder. The

defined model has two limiting cases, which recover two known models (Dyson I, Dyson

II) [49]. We show that the interplay between symmetry and correlation can generate

different kinds of transport. Particularly, we show that for this model the transport of

particles is subdiffusive but nevertheless the growth of entanglement is logarithmically

slow.

7.1 Model and localization length

In this section, we define the model that we study, and we explain several limiting

cases. Moreover, we analyze the localization length as a function of the Hamiltonian’s

parameters.
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The Hamiltonian Ĥ is the non-interacting fermionic random hopping model, which is

defined as,

Ĥ = −
∑
l

[J2l−1ĉ
†
2l−1ĉ2l + J2lĉ

†
2lĉ2l+1 + h.c], (7.1)

where {ĉ†l } ({ĉl}) are the fermionic creation (annihilation) operators at site l and {Jl}
are positive random hopping amplitudes. This model has a particle-hole symmetry. The

Schrödinger equation for the single-particle modes reads

− Jl−1ψl−1 − Jl+1ψl−+1 = Eψl, (7.2)

and if {ψl(E)} is a solution of Eq. 7.2 with energy E, then the wavefunction {ψl(−E) =

(−1)lψl(E)} is also a solution of Eq. 7.2 with energy −E.

The Hamiltonian Eq. 7.1 with uncorrelated disorder is called Dyson I model. It has a

diverging mean density of states ρ(E) ∼ 1/E log3(E) as E → 0 [26, 49, 108], which also

leads to a logarithmic divergence in the localization length for E → 0 [141, 161]. Using

the Herbert-Jones-Thouless formulae (Chapter 1)

ξloc(E → 0) ∼ lim
E→0

∫ ∞
−∞

dE′
log |E′ − E|
|E′| log3 |E′|

∼ lim
E→0

logE. (7.3)

In dynamical properties, the quasilocal nature of the state manifests itself in extremely

slow propagation of charge [81] (∼ log2 t) and bipartite entanglement growth∼ log(log(t))

[35, 152, 160]. Another interesting limiting case is when the random bonds {Jl} are in-

dependent identically distributed but they appear in identical pairs (J1, J1, J2, J2, ...).

This models is called Dyson II model [49]. Also in this case, the density of state has the

same kind of divergence (ρ(E) ∼ 1/E log3(E)), moreover also in this model the states

close to E = 0 are anomalous, in the sense that they are delocalized, as we explain later.

We start by investigating the localization length of the model Eq. 7.1 using the transfer

matrix technique (Chapter 1). With this aim, we define ξL(E) as the localization length

of a finite system of size L at energy E. We choose L odd with open boundary condition

as it guarantees the existence of a E = 0 state due to the sub-lattice symmetry (Eq. 7.2).

Nevertheless, due to the divergence in the density of state, the single-particle energy level

spacing close to E = 0 becomes exponentially small with L, thus even-odd finite-size

effect will not affect our result. As we have discussed in Chapter 1, ξL(E = 0) can

be expressed using the recursion relation between single-particle wavefunction Eq. 1.32

amplitudes as,

ξ−1
L (E = 0) =

1

L
log

∣∣∣∣ψL−1

ψ0

∣∣∣∣ =
1

L

L−1
2∑
l=1

log

(
J2l

J2l−1

)
, (7.4)
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where overline denotes the disorder average. For {Jl} uncorrelated and equally dis-

tributed, e.g., the Dyson I model, the average of the summation in Eq. 7.4 is zero.

However, in a typical configuration the sum is divergent with system size L, which in-

dicates that one needs to investigate the full probability distribution of the sequence

under the sum rather than just the mean. Using the central limit theorem, it can be

shown that the fluctuations grow as
√
L and therefore ξL(E = 0) ∼

√
L [34, 70]. On

the contrary, in the presence of dimerization, J2l−1=J2l, the Dyson II model, the sum in

Eq. 7.4 is zero for each configuration. Consequently ψL−1 = ψ0 implying that the E = 0

state is extended in all samples [161]. With the motivation of interpolating between

these two limits of quasilocalized (Dyson I) and extended (Dyson II) E = 0 states, we

choose the random couplings as

J2l−1 =B
(1)
2l−1 exp

−η2l−1B
(2)
2l−1

(2l − 1)α
;

J2l =B
(1)
2l−1 exp

η2lB
(2)
2l

(2l)α
,

where B
(1)
l , B

(2)
l are random variables drawn from Gamma distributions with unit mean

and variance 1/W(1,2) defined as

PW (x) =
WW

Γ(W )
xW−1e−Wx; x ≥ 0, (7.5)

where Γ(W ) is the Gamma function. {ηl} are independent random variables with the

probability distribution function ρ̃(η) = pδ(η − 1) + (1− p)δ(η + 1) with p ∈ [1
2 , 1], and

α ≥ 0. We can give few comments:

1. {Jl} are short-range correlated random variables and inhomogeneous in space.

2. The inhomogeneity is predominantly in the edge of the sample, while in the bulk

it is suppressed.

With this choice of {Jl}, Eq. 7.4 reduces to

log

∣∣∣∣ψL−1

ψ0

∣∣∣∣ =

L−1∑
l=1

ηlB
(2)
l

lα
. (7.6)

In Eq. 7.6, α and p determine the asymptotic behavior of ξL(E = 0) as the thermody-

namic limit is approached and also allows us to change the extension of the E = 0 state

almost continuously.
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Figure 7.1: Phase diagram with regard to the asymptotic behavior of the E = 0 state.
The regimes denoted by ‘Localized’ (‘Extended’) have localized (extended) E = 0 state.
For α = 0, p = 1/2 limit we recover the (uncorrelated) Dyson model and also for α > 1,
the dimerized Dyson II model is restored. See text for further details of the localization

length in Eq. 7.7 and Eq. 7.9.

For p 6= 1/2 and α ≥ 0, averaging over the disorder and approximating the sum in

Eq. 7.6 as an integral in the large L limit, we get

ξL(E = 0) ∼


(2p− 1)−1Lα, 0 ≤ α < 1

(2p− 1)−1L/ logL, α = 1

(2p− 1)−1L, α > 1,

(7.7)

which immediately identifies four distinct regimes. For α = 0, ξL(E = 0) is finite, which

leads to an exponentially localized state. In the range 0 < α < 1, the localization

length diverges algebraically but slower than the system size, which we refer to as a

quasilocalized state (see also Fig. 7.1). The logarithmic correction to ξL(E = 0) at

α = 1 produces a polynomial spatial decay of the wavefunction. In the limit α → ∞,

the correlation reveals itself via the dimerization of bonds, J2l−1 = J2l, which is the

Dyson II model with an extended E = 0 state.

For p = 1/2, the sign ηl appears with equal probability. Therefore, ξ−1
L (E = 0) defined

in Eq. 7.4 goes to zero upon taking disorder average. Hence, in order to understand

the asymptotic behavior of ξ−1
L (E = 0), we analyze the fluctuations of the sequence

{log |ψL−1/ψ0|}, similar to the Dyson I model as follows. Let AL be the random variable

defined after averaging over {B(2)
l } in Eq. 7.6,

AL =

[
log

∣∣∣∣ψL−1

ψ0

∣∣∣∣] =
L−1∑
l=1

ηl
lα
. (7.8)
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(a) (b) (c)

Figure 7.2: (a) The disorder averaged wavepacket at different times for the Dyson II
model. The central core decays quickly and saturates after initial dynamics; whereas
the tail of the distribution keeps spreading with time. Inset shows the return probability
for L = 4097. (b) The growth of X2(t) with time for L = {513, . . . , 4097} in log-log
scale. For finite systems it saturates to a value which grows linearly with the system
size. Inset shows X2(t)∆E with E = 0 present in ∆E which grows subdiffusively and
absent which saturates, hence confirming that the dynamics is governed by the states
close to E = 0 (L = 4097). (c) The entanglement entropy shows a logarithmic growth
in time S(t) ∼ log t and the saturation, S∞, grows logarithmically with L as shown in

the inset.

AL is a sum of independent but not identically distributed random variables with zero

mean and variance σ2
l = 1/l2α. The Lyapunov Central Limit theorem [79] then dictates

that the probability distribution of AL approaches to a Gaussian distribution with zero

mean and variance, σ2
AL

=
∑L−1

l=1 l−2α, in the limit L→∞. The asymptotic behavior of

σ2
AL

can then be used to extract the behavior of the localization length,

ξL(E = 0) ∝ L

σAL
∼


Lα+1/2, 0 ≤ α < 1/2

L/
√

logL, α = 1/2

L, α > 1/2.

(7.9)

Three qualitatively different regimes can be identified. For 0 ≤ α < 1/2, the localization

length diverges algebraically, but slower than the system size. At the α = 0, p = 1/2

point, we recover the Dyson I model, where the localization length diverges as ∼
√
L

solely due to fluctuations. Finally, for α > 1/2, the state is extended with system

size. The behavior of ξL(E = 0) as a function of α and p is summarized in Fig. 7.1.

Importantly, the phase diagram is stable against any local perturbations that do not

break the original symmetry of the Ĥ, because it does not qualitatively change the

structure of Eq. 7.4.

7.2 Dynamical properties

In this section we study the dynamical properties of the Hamiltonian Ĥ (Eq. 7.1). We

have established that the model (Eq. 7.1) with the random couplings Eq. 7.5 hosts

several different natures of extended/quasilocalized state at E = 0. We now investigate
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its effects on dynamical properties. First, we study charge propagation via wavepacket

dynamics in the single-particle framework. The initial wavepacket is localized at a single

point l0 in the middle of the chain, ψ(l, t = 0) = δl,l0 . With time it spreads out and its

amplitude at the initial site l0 decays. We monitor the decay of the initial density via the

return probability 〈Rl0(t)〉 = |ψ(l0, t)|2 and quantify the spreading of the charge by the

disordered average mean-square displacement 〈X2(t)〉 =
∑

l l
2|ψ(l, t)|2−(

∑
l l|ψ(l, t)|2)2.

It is important to note, that the study of the wavepacket analysis is equivalent of the

study of the density-density correlator function (Chapter 5)

4

2L
Tr

[(
n̂l(t)−

1

2

)(
n̂l0(0)− 1

2

)]
= |ψ(l, t)|2, (7.10)

where n̂l = ĉ†l ĉl.

Furthermore, the growth of the bipartite entanglement entropy S(t)=−Tr(ρL(t) log(ρL(t))),

between two halves of the system L and R is investigated using standard free fermion

techniques (Appendix A), where ρL(t)=TrR(|ψ(t)〉〈ψ(t)|) and |ψ(t=0)〉 is a random prod-

uct state at half-filling. Under time-evolution, L and R subsystems exchange information

leading to the growth of S(t), which is zero at t = 0. In our simulations, we use open

boundary conditions with W1 = 0.4 and W2 = 10.

7.2.1 Dyson II

We expect that the dynamical properties of these localized systems will be dominated

by the properties of the states close to E = 0, thus it is expected that the dynamics

would be qualitatively different depending on which regime of the phase diagram they

belong to. In this section, we focus on the Dyson II model with dimerized hopping. In

Fig. 7.2(a) we show the probability distribution of the time dependent wavefunction at

different times. At long times only the tail of the wavefunction keeps spreading, while

the return probability saturates after an algebraic decay as seen in the inset. Finite

〈Rl0(t)〉 at long times implies a finite density of exponentially localized states in the

energy spectrum.

Fig. 7.2(b) shows the expansion of the width of wavepacket. The linear behavior of

the width with time in log-log scale suggests 〈X2(t)〉 ∼ tβ, where the non-universal

exponent β depends on the disorder strength, e.g., β ≈ 0.35 for W1 = 0.4 , which implies

subdiffusion. For finite systems, the growth saturates, with the saturation value growing

linearly with the system size reflecting the spatial extension of the E = 0 state Eq. 7.7.

Note that due to the diverging nature of the density of states, the dynamics is always

going to be dominated by a finite number of states in the vicinity of E = 0. We ascertain
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this by projecting the initial wavepacket onto eigenstates within an energy window ∆E

that includes E = 0 and also away from it as |ψ0〉∆E = P̂∆E |ψ(l0, t=0)〉, where P̂∆E =∑
E∈∆E |E〉〈E| and |E〉 is the eigenstate. We contrast the two situations by measuring

the spread of the wavepacket as 〈X2(t)〉∆E = 〈ψ0|∆EX̂2(t)|ψ0〉∆E−〈ψ0|∆EX̂2(0)|ψ0〉∆E .

As seen in Fig. 7.2(b, inset) the spectral decomposed wavepacket with the E = 0 state

shows a subdiffusive propagation, whereas the wavepacket that has been projected away

from the band center quickly saturates as one would expect for localized states.

Fig. 7.2(c) shows the growth of disorder averaged bipartite entanglement S(t) starting

from a product state. We observe a logarithmic growth of S(t) in time, which is slower

than the charge transport. For W1 = 0.4 the prefactor of log(t) is ≈ ln(2)/3. In the

inset of Fig. 7.2(c) the saturation value of S(t) at t → ∞ (S∞) is plotted in a log-

linear scale, which shows logarithmic scaling with system size with a slope ≈ ln(2).

The logarithmic scaling of S∞ is similar to entanglement scaling of critical states [148].

Unlike in an interacting localized phase, where entanglement is generated via dephasing

due to interaction as we discussed in Chapter 2, here it is due to the extended nature

of the E = 0 state, which implies that the saturation time of S(t) is proportional to the

localization length of the extended state. Note that, there is no qualitative change in our

results at higher values of W1. Specifically for W1 > 1, when the Gamma distribution

Eq 7.5 becomes non-singular at zero, 〈X2(t)〉 and S(t) still show a subdiffusive and

logarithmic growth in time respectively. Indeed, Fig. 7.3(top) shows the growth of

〈X2(t)〉 for the Dyson II model for W1 = 0.8 and W1 = 1.2. For both these values of

W1, 〈X2(t)〉 grows algebraically with time (〈X2(t)〉 ∼ tβ(W1) , with β(W1 = 1.2) ≈ 0.78

and β(W1 = 0.8) ≈ 0.59), showing the subdiffusive dynamics. Fig. 7.3(bottom) shows

that the growth of S(t) for the Dyson II model with W1 = 1.2. It is still clearly visible

that the entanglement growth in time is logarithmic, S(t) ∼ log(t).

7.2.2 Generalized Dyson model

For any finite α (0 ≤ α ≤ 1), charge propagation is subdiffusive. The difference for

different α is seen in the scaling of the saturation values of 〈Rl0,∞〉 and 〈X2
∞〉 with L,

as the localization lengths depend on α. Fig. 7.4(a) shows the t → ∞ value of the

width of the wavepacket in a log-log plot as a function of system size. The leading

behavior is given by Lα as one would expect from the extended nature of the E = 0

eigenstate described in Eq. 7.7. Crudely approximating the E = 0 eigenstate, |φ0〉, as

a box-function of width ξL(E = 0), one finds 〈φ0|X̂2|φ0〉 ∝ ξL(E = 0). Similarly, in
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Figure 7.3: (Top) The subdiffusive growth of 〈X2(t)〉 for the Dyson II model in log-log
scale for two different values of W1 and for two different system sizes L = 2049, 4097.
(Bottom) Logarithmic growth of S(t) for the Dyson II model for W1 = 1.2 and L =

1025, 2049.

Fig. 7.4(b) we show the return probability at t→∞, defined as

〈Rl0(t)〉= |ψ(l0, t)|2
t→∞−−−→

∑
n

|φn(l0)|4 , (7.11)

which is the inverse participation ratio (IPR) of the single-particle eigenstates (Chap-

ter 1). Two things are of note:

1. For 0 ≤ α ≤ 1, it converges with L, which emphasizes that most of the eigenstates

are localized.

2. For α = 0, the 〈Rl0,∞〉 converges at a different value than other α’s. This can be un-

derstood from the following decomposition of inverse participation ratio Eq. 7.11,∑
n |φn(l0)|4 =

∑
n<|∆E| |φn(l0)|4 +

∑
n>|∆E| |φn(l0)|4 , where ∆E is the window of

energies enclosing delocalized states around E = 0. Only for α 6= 0 the first term

in the sum is negligible because of the extended nature of the states within the

interval ∆E, however for α = 0, ∆E = 0 as all states are localized Eq. 7.7. There-

fore, it is expected that α = 0 converges at a higher value as seen in Fig. 7.4(b)

compared to other α.
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(a) (b)

Figure 7.4: (a) 〈X2
∞〉 for different values of α in a log-log scale to highlight the

scaling ∝ Lα as expected from the localization length calculation Eq. 7.7. (b) The
return probability 〈Rl0,∞〉 Eq. 7.11 for different α shows saturation with system size

L. Dashed lines are given as guides to the eye.

Fig. 7.5(a) shows the time evolution of S(t) for different values of α after a global quench.

The data shows a logarithmic growth of entanglement similar to Dyson II. Note that

the slope at which S(t) grows is almost independent of α, while the effect of α is clearly

visible in the saturation. To highlight the dependence of the saturation with system

size we plot S∞ as a function of L in Fig. 7.5(b) in log-linear scale. For α > 0 we see

a logarithmic increase of S∞ with a slope ∝ α. This is further confirmed in Fig. 7.5(c),

where the saturation of entanglement is plotted as a function of α. The behavior suggests

the following form of S(t) with time and system size,

S(t) ∼ log(t); S∞ ∼ log[ξL,α(E = 0)], (7.12)

where ξL,α(E = 0) is the localization length and is ∝ Lα (Eq. 7.7). For α = 0, p >

1/2 the state is exponentially localized and therefore neither charge or entanglement

propagate.

7.3 Summary

In summary in this chapter, we have constructed a generalized correlated one-dimensional

random bond disorder model and studied its non-equilibrium dynamics. Even though

the localization length of the E = 0 state is divergent, the state can be quasilocalized

or extended and its spatial extent depends on the correlations in disorder. We have

shown that the dynamical properties are dominated by the states close to E = 0. In

all the parameter regimes studied we find subdiffusive transport, while logarithmically

slow growth of entanglement. The saturation value of the wavepacket and entanglement
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(a)

(b) (c)

Figure 7.5: (a) Dynamics of entanglement for different values of α and p = 1 in a
log-linear scale after a quench from a product state. The logarithmic growth of S(t)
is visible for all values of α shown here. (b) The saturation value of S(t) at long time
behaves as log(L) for all α 6= 0. (c) The entanglement saturation S∞ shows a linear

growth with α (L = 4097) Eq. 7.12.

depends on the finite-size localization length of the E = 0 state. In particular, S∞ grows

logarithmically with the localization length of the E = 0 state. The scaling behavior is

similar to the scaling of S in the excited state of uncorrelated random spin chain in the

same universality class [148], except that in our generalized model disorder correlation

enters in the S∞ scaling via the finite-size localization length of the E = 0 state.



Chapter 8

Conclusions and Outlooks

Understanding the fundamentals of statistical mechanics from the laws of quantum me-

chanics is one of the most intriguing questions in physics. The common belief that

interactions in a quantum many-body system lead to ergodicity has been lately revis-

ited showing the existence of a robust class of systems in which the laws of statistical

mechanics break down [17]. Moreover, these systems have a new type of quantum

phase transition, which can even happen at finite energy density. This phase transition

distinguishes two phases [17, 62]: an ergodic phase which is governed by the laws of ther-

modynamics and a localized phase in which the degrees of freedom are frozen and thus

statistical mechanics breaks down. The existence of a quantum phase transition at finite

energy density has revolutionized the point of view of condensed-matter physics, whose

previous focus was mainly on understanding low-temperature properties of many-body

systems. These results have brought new emphasis and stimulated extensive research

on the resulting many-body localization (MBL) [106].

The main focus of this thesis lies on understanding the phenomenon of MBL. We tackle

the MBL problem with several methods and from different perspectives, ranging from

the study of entanglement properties to the study of more conventional condensed-

matter quantities (e.g. density-density propagator), including a detailed characterization

of time-reversibility in quantum many-body systems. Most of our results have been

obtained using numerical techniques, including exact diagonalization, Chebyshev kernel

polynomial and transfer matrix techniques. Additionally, we always corroborate and

support our analysis with analytical evaluations motivated by physical intuition.

Indeed, one of the main issues, especially in view of recent experiments, has been the

possibility to distinguish an MBL phase from a non-interacting localized phase (An-

derson insulator, AI). In Chapter 3, we show, using methods borrowed from quantum-

information theory, a new way to distinguish an MBL phase from an AI phase. In
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particular, we find that the quantum mutual information between two spins following

the quantum-dynamics of a state can be used as a dynamical indicator for this distinc-

tion. The proposal of this quantity, being in principle measurable in an experimental

setup (e.g. cold atoms, trapped ions), could give important insights on the interpretation

of experimental results [24, 97, 129, 137]. In Chapter 4, with the aim of characterizing

time-reversibility in MBL systems, we study the effect of local perturbations on the

dynamics of observables. We propose an experimentally measurable quantity (e.g. with

the use of a quantum gas microscope [14, 134]) which also allows us to distinguish an

MBL phase from an AI phase. Moreover, this quantity gives important information on

the long-time limit of the dynamics of an MBL system.

We also tackle another important open issue in MBL. Several works pointed out the

possible existence of an intermediate phase. The transport in this intermediate phase

has been argued to be sub-diffusive, contrary to the expected diffusive behavior of a

metal [15, 60, 94, 96, 132, 150]. Moreover, this phase has been characterized to be

multifractal, and believed to be explained with the existence of Griffiths regions, in

which the transport would be highly suppressed. In Chapter 5, we criticize the existence

of this phase. Studying the density-density propagator, including a careful analysis

on finite-size effects, we show that the exponents defining the sub-diffusive phase do

not converge for available system sizes. Our analysis confirms the existence of a sub-

diffusive phase for these sizes, despite leaving open the possibility that diffusivity could

be restored in the thermodynamic limit. We also point out that the propagation process

is highly non-Gaussian, this could have important consequences for understanding the

critical points of an MBL system. Indeed, the propagation of particles in classical glassy

systems close to the frozen transition is also non-Gaussian even if the mean square

displacement could show diffusive behavior [32, 101, 122, 154]. This analogy could be

useful to build up an intuition for the MBL transition, and it could be an interesting

future line of research. As we have discussed at several points of this thesis, an MBL

problem can be mapped onto an Anderson problem in an effective local tree structure

graph (localization in Fock space). In first approximation, due to this mapping, an

MBL problem could be seen as an Anderson problem on a random-regular-graph (RRG).

Recently, the existence of a multifractal phase has been argued also for the Anderson

model on a RRG [7, 41, 57, 82, 145]. Thus, with the aim of understanding the existence

of the putative intermediate phase in an MBL system, we also study the intermediate

phase in a RRG. In Chapter 6, studying the quantum evolution of an initially localized

particle in a RRG, we provide evidence of the possible existence of this multifractal

phase. Our finding are more general, in the sense that our methods permit to give a new

characterization of multifractal phases that we tested for several different models having

critical phase. Nevertheless, it is not clear whether the existence of this phase for a RRG
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implies the existence of an intermediate phase for MBL models. Therefore, in Chapter 6,

we discus in detail the main differences between the MBL problem and the RRG. One

of the main approximations is to consider uncorrelated on-site energies in a RRG, while

in an MBL they are strongly correlated. Thus, a first step could be to introduce in the

RRG suitable correlations between on-site energies and try to understand the robustness

of this intermediate phase. Moreover, we focus on local probes (survival probability).

It will be interesting to expand our work by studying the full propagation of the wave-

packet, as we did for the MBL problem (Chapter 5). Finally, we believe that the existence

of an intermediate phase in MBL models is still an open issue, that needs to be better

analyzed. Also the phenomenological theory based on the existence of Griffiths [60, 152]

phases could be incomplete for the following reasons. First, the probability distribution

of the considered quantities is not consistent with the existence of rare regions (e.g no

difference between mean value and typical value). Second, the same physics is observed

(numerically and experimentally) in a model with a quasi-periodic potential, but for this

model rare Griffiths regions are not possible. Thus, a possible way to understand the

existence of this intermediate phase could be by using more treatable toy models (e.g.

RRG with correlated disorder).

The second law of thermodynamics seems to impose strong constraints on the time-

reversibility of a natural process. In an MBL phase ergodicity breaks down, and thus

a thermodynamic description is not possible anymore, leading to a major question: to

what extent does this breaking of ergodicity influence time-reversibility? In Chapter 4,

borrowing tools from quantum-chaos (i.e. Loschmidt echo), we attempt to answer this

question. Our results support the idea that time-irreversibility is more strongly mani-

fested in the ergodic phase than in the localized phase. Moreover, we support our con-

clusions with analytical approximated calculations, which give a reliable description of

the analyzed quantity. As we discussed, an intermediate multifractal phase could exist,

and therefore it will be interesting to use these methods to analyze the existence of this

multifractal phase for both problems MBL and RRG. Also with the aim to understand

how time-irreversibility is influenced in the presence of critical states.

In the last part of the thesis (Chapter 7), we study the interplay between symmetry

(particle-hole) and correlated disorder for a non-interacting fermionic model. We con-

struct a model in which we can tune the correlated disorder, showing that the resulting

phase diagram is extremely rich. In particular, we study the non-equilibrium quantum

dynamics, showing that information can propagate slower than charge. It would be in-

teresting to analyze the presence of particle-hole symmetry in an MBL system and try to

understand the effect on its dynamics. Preliminary results, which we have not reported

in this thesis, show that in a disordered system composed by two interacting fermions,
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the presence of particle-hole symmetry drastically changes the dynamics of the system.

In the resulting system all the eigenstates are localized, but nevertheless these two par-

ticles can still propagate sub-diffusely through the system. This mechanism is strictly

connected with the presence of the particle-hole symmetry an thus with the divergence

of the single-particle density of states (Chapter 7). Whether this mechanism persists in

the case of a finite density of particles still needs to be elucidated.



Appendix A

Appendix

A.1 Time evolution: Chebyshev expansion

In this part of the Appendix we explain how the quantum-evolution of a system can be

performed using the Kernel polynomial techniques [156]. Let Ĥ be the Hamiltonian of

a quantum system. The idea is to expand the unitary time-evolution using Chebyshev

polynomials {Tk(x)} and then to truncate the expansion to some order which will bound

the absolute error in time done with this approximated method.

U(t) ≈ e−ibt
N∑
k=0

µkTk(H̃); µk = (−i)kJk(at), (A.1)

where H̃ = e−itĤ Ĥ−ba denotes the rescaled Hamiltonian;

a =(Emax−Emin)/2,

b =(Emax+Emin)/2,
(A.2)

are the scaling factors and Jk(x) denotes the Bessel function of order k. We typically

take N & 2at to ensure convergence [155] of the truncated Chebyshev series (Tk(x)).

Eq. (A.1) only requires sparse matrix multiplications. The iterative scheme scales as

O(M) as compare to exact diagonalization which is O(M3), M denoting the dimension

of Ĥ. Therefore, for a chain of interacting spinless fermions, system sizes up to L = 24

can be treated for times of the order ≈ 103 (in units of inverse hopping t = 1.0 for the

interact).
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A.2 Bipartite entanglement entropy for non-interacting spin-

less fermions

Let Ĥ be the Hamiltonian of a chain of non-interacting spinless fermions

Ĥ =

L∑
i,j=1

ĉ†iΩi,j ĉj , (A.3)

where the {ĉ†i} ({ĉi}) are the creation (annihilation) fermionic operators and Ωi,j a sym-

metric matrix with a bounded norm. The aim is to calculate the bipartite entanglement

entropy (Chapter 2) (tracing out the portion [1, ..., L2 ] for an eigenstate |e〉 of Ĥ. It is

possible to prove [112] that the bipartite entanglement entropy is given by

S = −
∑
k

(λk) log (λk)−
∑
k

(1− λk) log (1− λk), (A.4)

where {λk} are the eigenvalues of the matrix Ai,j = 〈e|ĉ†i ĉj |e〉 with {i, j} ∈ [1, ..., L2 ]. Fi-

nally, the expectation value 〈e|ĉ†i ĉj |e〉 can be calculated using the Wick’s theorem [113].
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[46] Dóra, B., R. Lundgren, M. Selover, and F. Pollmann, 2016, Phys. Rev. Lett. 117,

010603, URL http://link.aps.org/doi/10.1103/PhysRevLett.117.010603.
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[131] Serbyn, M., Z. Papić, and D. A. Abanin, 2014, Phys. Rev. B 90, 174302, URL

http://link.aps.org/doi/10.1103/PhysRevB.90.174302.
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